Home Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces
Article
Licensed
Unlicensed Requires Authentication

Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces

  • Mohammad W. Alomari ORCID logo EMAIL logo
Published/Copyright: January 30, 2019

Abstract

In this work, an operator version of Popoviciu’s inequality for positive operators on Hilbert spaces under positive linear maps for superquadratic functions is proved. Analogously, using the same technique, an operator version of Popoviciu’s inequality for convex functions is obtained. Some other related inequalities are also presented.

MSC 2010: 47A63

Acknowledgements

The author wish to thank the referee(s) for their fruitful comments and careful reading of the original manuscript of this work that have implemented the final version of this work.

References

[1] S. Abramovich, S. Ivelić and J. E. Pečarić, Improvement of Jensen–Steffensen’s inequality for superquadratic functions, Banach J. Math. Anal. 4 (2010), no. 1, 159–169. 10.15352/bjma/1272374678Search in Google Scholar

[2] S. Abramovich, G. Jameson and G. Sinnamon, Refining Jensen’s inequality, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 47(95) (2004), no. 1–2, 3–14. Search in Google Scholar

[3] S. Banić, J. Pečarić and S. Varošanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc. 45 (2008), no. 2, 513–525. 10.4134/JKMS.2008.45.2.513Search in Google Scholar

[4] M. Bencze, C. P. Niculescu and F. Popovici, Popoviciu’s inequality for functions of several variables, J. Math. Anal. Appl. 365 (2010), no. 1, 399–409. 10.1016/j.jmaa.2009.10.069Search in Google Scholar

[5] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs Math., Springer, New York, 2012. 10.1007/978-1-4614-1521-3Search in Google Scholar

[6] W. O. Fechner, Hlawka’s functional inequality on topological groups, Banach J. Math. Anal. 11 (2017), no. 1, 130–142. 10.1215/17358787-3764339Search in Google Scholar

[7] M. Fujii, M. S. Moslehian and J. Mićić, Bohr’s inequality revisited, Nonlinear Analysis, Springer Optim. Appl. 68, Springer, New York, (2012), 279–290. 10.1007/978-1-4614-3498-6_15Search in Google Scholar

[8] O. Hirzallah, Non-commutative operator Bohr inequality, J. Math. Anal. Appl. 282 (2003), no. 2, 578–583. 10.1016/S0022-247X(03)00185-9Search in Google Scholar

[9] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), no. 1, 175–193. 10.1007/BF02418571Search in Google Scholar

[10] M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl. 456 (2014), 82–87. 10.1016/j.laa.2012.12.011Search in Google Scholar

[11] M. Kian and S. S. Dragomir, Inequalities involving superquadratic functions and operators, Mediterr. J. Math. 11 (2014), no. 4, 1205–1214. 10.1007/s00009-013-0357-ySearch in Google Scholar

[12] M. Krnić, N. Lovričević, J. Pečarić and J. Perić, Superadditivity and Monotonicity of the Jensen-type Functionals, Monogr. Inequal. 11, Element, Zagreb, 2015. Search in Google Scholar

[13] J. Mićić, J. Pečarić and J. Perić, Extension of the refined Jensen’s operator inequality with condition on spectra, Ann. Funct. Anal. 3 (2012), no. 1, 67–85. 10.15352/afa/1399900024Search in Google Scholar

[14] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new Inequalities in Analysis, Math. Appl. (East European Series) 61, Kluwer Academic, Dordrecht, 1993. 10.1007/978-94-017-1043-5Search in Google Scholar

[15] B. Mond and J. E. Pečarić, Convex inequalities in Hilbert space, Houston J. Math. 19 (1993), no. 3, 405–420. Search in Google Scholar

[16] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155–167. 10.7153/mia-03-19Search in Google Scholar

[17] C. P. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books Math./ Ouvrages Math. SMC 23, Springer, New York, 2006. 10.1007/0-387-31077-0Search in Google Scholar

[18] C. P. Niculescu and F. Popovici, A refinement of Popoviciu’s inequality, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 49(97) (2006), no. 3, 285–290. Search in Google Scholar

[19] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond–Pečarić Method in Operator Inequalities, Monogr. Inequal. 1, Element, Zagreb, 2005. Search in Google Scholar

[20] T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, An. Ştinnţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.) 11B (1965), 155–164. Search in Google Scholar

[21] D. M. Smiley and M. F. Smiley, The polygonal inequalities, Amer. Math. Monthly 71 (1964), 755–760. 10.1080/00029890.1964.11992316Search in Google Scholar

[22] S.-E. Takahasi, Y. Takahashi and A. Honda, A new interpretation of Djoković’s inequality, J. Nonlinear Convex Anal. 1 (2000), no. 3, 343–350. Search in Google Scholar

[23] S.-E. Takahasi, Y. Takahashi, S. Miyajima and H. Takagi, Convex sets and inequalities, J. Inequal. Appl. (2005), no. 2, 107–117. 10.1155/JIA.2005.107Search in Google Scholar

[24] P. M. Vasić and L. R. Stanković, Some inequalities for convex functions, Math. Balkanica 6 (1976), 281–288. Search in Google Scholar

[25] F. Zhang, On the Bohr inequality of operators, J. Math. Anal. Appl. 333 (2007), no. 2, 1264–1271. 10.1016/j.jmaa.2006.12.024Search in Google Scholar

Received: 2018-09-14
Revised: 2019-01-11
Accepted: 2019-01-13
Published Online: 2019-01-30
Published in Print: 2019-10-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/apam-2018-0154/html
Scroll to top button