Startseite An analogue to the Duistermaat–Kolk–Varadarajan estimate for the spherical functions associated with the root systems of type A
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An analogue to the Duistermaat–Kolk–Varadarajan estimate for the spherical functions associated with the root systems of type A

  • Patrice Sawyer EMAIL logo
Veröffentlicht/Copyright: 26. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider the generalized spherical functions ϕλ associated to the root systems of type A in order to provide an estimate in the spectral parameter λ. This estimate generalizes, for the root systems of type A, an estimate obtained by Duistermaat, Kolk and Varadarajan.

We thank the referee for a thorough review of this paper and for helpful comments.

References

[1] Delorme P., Espace de Schwartz pour la transformation de Fourier hypergéométrique, J. Funct. Anal. 168 (1999), no. 1, 239–312. 10.1006/jfan.1999.3449Suche in Google Scholar

[2] Duistermaat J. J., Kolk J. A. C. and Varadajan V. S., Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Compos. Math. 49 (1983), 309–398. Suche in Google Scholar

[3] Graczyk P. and Sawyer P., On the kernel of the product formula on symmetric spaces, J. Geom. Anal. 14 (2004), no. 4, 653–672. 10.1007/BF02922174Suche in Google Scholar

[4] Gradshteyn I. S. and Ryzhik I. M., Table of Integrals, Series, and Products, 7th ed., Elsevier, Amsterdam, 2007. Suche in Google Scholar

[5] Heckman G. J., Root systems and hypergeometric functions II, Compos. Math. 64 (1987), 353–374. Suche in Google Scholar

[6] Helgason S., Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Math. Surveys Monogr. 83, American Mathematical Society, Providence, 2000. 10.1090/surv/083/03Suche in Google Scholar

[7] Helgason S., Differential Geometry, Lie Groups and Symmetric spaces, Grad. Stud. Math. 34, American Mathematical Society, Providence, 2001. 10.1090/gsm/034Suche in Google Scholar

[8] Macdonald I. G., Commuting differential operators and zonal spherical functions, Algebraic Groups (Utrecht 1986), Lecture Notes in Math. 1271, Springer, Berlin (1987), 189–200. 10.1007/BFb0079238Suche in Google Scholar

[9] Narayanana E. K., Pasquale A. and Pusti S., Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications, Adv. Math. 252 (2014), 227–259. 10.1016/j.aim.2013.10.027Suche in Google Scholar

[10] Opdam E. M., Root systems and hypergeometric functions IV, Compos. Math. 67 (1988), no. 2, 191–209. Suche in Google Scholar

[11] Opdam E. M., Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75–121. 10.1007/BF02392487Suche in Google Scholar

[12] Opdam E. M., Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups, MSJ Mem. 8, Mathematical Society of Japan, Tokyo, 2000. Suche in Google Scholar

[13] Pasquale A., Asymptotic analysis of Θ-hypergeometric functions, Invent. Math. 157 (2004), no. 1, 71–122. 10.1007/s00222-003-0349-9Suche in Google Scholar

[14] Sawyer P., Estimates for the heat kernel on SL(n,R)/SO(n), Canad. J. Math. 49 (1997), no. 2, 359–372. 10.4153/CJM-1997-018-1Suche in Google Scholar

[15] Sawyer P., Spherical functions on symmetric cones, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3569–3584. 10.1090/S0002-9947-97-01505-5Suche in Google Scholar

[16] Sawyer P., The heat kernel on the symmetric space SL(n,F)/SU(n,F), The Ubiquitous Heat Kernel (Boulder 2003), Contemp. Math. 398, American Mathematical Society, Providence (2006), 369–391. 10.1090/conm/398/07497Suche in Google Scholar

[17] Schapira B., Contributions to the hypergeometric function theory of Heckman and Opdam: Sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal. 18 (2008), no. 1, 222–250. 10.1007/s00039-008-0658-7Suche in Google Scholar

Received: 2015-9-2
Revised: 2016-3-3
Accepted: 2016-3-6
Published Online: 2016-6-26
Published in Print: 2016-7-1

© 2016 by De Gruyter

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/apam-2015-0050/html
Button zum nach oben scrollen