Abstract
The aim of this work is to present a model for coupling the Darcy equations in a porous medium with the Navier–Stokes equations in the cracks. We consider a two- or three-dimensional domain with non-standard condition at the interface, namely the continuity of the pressure. We propose a mixed formulation and establish the existence of a solution for the coupled problem.
References
[1] Amara M., Capatina-Papaghiuc D., Chacon-Vera E. and Trujillo D., Vorticity-velocity-pressure formulation for Navier–Stokes equations, Comput. Vis. Sci. 6 (2004), 47–52. 10.1007/s00791-003-0107-ySearch in Google Scholar
[2] Amrouche C., Bernardi C., Dauge M. and Girault V., Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci. 21 (1998), 823–864. 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-BSearch in Google Scholar
[3] Aouadi S. M., Bernardi C. and Satouri J., Mortar spectral element discretization of the Stokes problem in axisymmetric domains, Numer. Methods Partial Differential Equations 30 (2014), 44–73. 10.1002/num.21794Search in Google Scholar
[4] Aouadi S. M. and Satouri J., Mortar spectral method in axisymmetric domains, ESAIM Math. Model. Numer. Anal. 47 (2013), 33–55. 10.1051/m2an/2012018Search in Google Scholar
[5] Azaiez M., Bernardi C. and Chorfi N., Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations, Numer. Math. 104 (2006), 1–26. 10.1007/s00211-006-0684-zSearch in Google Scholar
[6] Bègue C., Conca C., Murat F. and Pironneau O., Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression, Nonlinear Partial Differential Equations and their Applications, Pitman Res. Notes Math. Ser. 181, Longman Scientific & Technical, Harlow (1988), 179–264. Search in Google Scholar
[7] Bernardi C., Chacón Rebollo T., Hecht F. and Mghazli Z., Mortar finite element discretization of a model coupling Darcy and Stokes equations, ESAIM Math. Model. Numer. Anal. 42 (2008), 375–410. 10.1051/m2an:2008009Search in Google Scholar
[8] Bernardi C. and Chorfi N., Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem, SIAM J. Numer. Anal. 44 (2006), 826–850. 10.1137/050622687Search in Google Scholar
[9] Bernardi C., Hecht F. and Nouri F. Z., A new finite element discretization of the Stokes problem coupled with Darcy equations, IMA J. Numer. Anal. 30 (2010), 61–93. 10.1093/imanum/drn054Search in Google Scholar
[10] Bernardi C., Hecht F. and Pironneau O., Coupling Darcy and Stokes equations for porous media with cracks, ESAIM Math. Model. Numer. Anal. 39 (2005), no. 1, 7–35. 10.1051/m2an:2005007Search in Google Scholar
[11] Brézis H., Analyse fonctionnelle, Masson, Paris, 1999. Search in Google Scholar
[12] Dubois F., Salaün M. and Salmon S., Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem, J. Math. Pures Appl. (9) 82 (2003), 1395–1451. 10.1016/j.matpur.2003.09.002Search in Google Scholar
[13] Girault V. and Raviart P.-A., Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer, Berlin, 1986. 10.1007/978-3-642-61623-5Search in Google Scholar
[14] Salmon S., Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes, Ph.D. thesis, Université Pierre et Marie Curie, Paris, 1999. Search in Google Scholar
[15] Satouri J., Aouadi S. M. and Mabrouki Y., Spectral discretization of Darcy equation coupled with Stokes’ equation by vorticity-velocity-pressure formulation, preprint 2015. Search in Google Scholar
© 2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Ultrametric approximations of a Drygas functional equation
- An analogue to the Duistermaat–Kolk–Varadarajan estimate for the spherical functions associated with the root systems of type A
- Analysis of a Navier–Stokes–Darcy coupling problem
- Wilson’s type Hilbert space valued functional equations
- Applications of statistical convergence to n-normed spaces
- Application of g-frames in conjugate gradient
Articles in the same Issue
- Frontmatter
- Ultrametric approximations of a Drygas functional equation
- An analogue to the Duistermaat–Kolk–Varadarajan estimate for the spherical functions associated with the root systems of type A
- Analysis of a Navier–Stokes–Darcy coupling problem
- Wilson’s type Hilbert space valued functional equations
- Applications of statistical convergence to n-normed spaces
- Application of g-frames in conjugate gradient