Startseite Smartphone videoscopy: Recent progress and opportunities for biosensing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Smartphone videoscopy: Recent progress and opportunities for biosensing

  • Yan Wang ORCID logo , Shengwei Zhang ORCID logo und Qingshan Wei ORCID logo EMAIL logo
Veröffentlicht/Copyright: 3. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Smartphone is emerging as a portable analytical biosensing platform in many point-of-care (POC) applications such as disease diagnostics, environmental monitoring, and food toxin screening. With the recent advancement of imaging technologies on the smartphone, the manual control of acquisition settings (e.g., exposure time, frame rate, focusing distance, etc.) has already been expanded from the photo to the video capturing mode. In modern smartphone models, high frame rate (above 100 fps) can be achieved to bring in a new temporal dimension to the smartphone-supported POC tests by recording high-definition videos. This opens up a new analytical method defined as smartphone videoscopy. In this review, the recent development of smartphone videoscopy is summarized based on different POC applications. Representative examples of smartphone videoscopy systems and how these time-dependent measurements could open up new opportunities for POC diagnostics are discussed in detail. The advances demonstrated so far illustrate the promising future of smartphone videoscopy in biosensing, POC diagnostics, and time-resolved analysis in general.


Corresponding author: Qingshan Wei, Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695 USA, E-mail:
Yan Wang and Shengwei Zhang was contributed equally to this work.

Award Identifier / Grant number: Chancellor’s Faculty Excellence Program

Award Identifier / Grant number: 1944167

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by National Science Foundation (Award No. 1944167) and NCSU Chancellor’s Faculty Excellence Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. E. McCracken and J.-Y. Yoon, “Recent approaches for optical smartphone sensing in resource-limited settings: a brief review,” Anal. Methods, vol. 8, pp. 6591–6601, 2016, https://doi.org/10.1039/c6ay01575a.Suche in Google Scholar

[2] X. Huang, D. Xu, J. Chen, et al.., “Smartphone-based analytical biosensors,” Analyst, vol. 143, pp. 5339–5351, 2018, https://doi.org/10.1039/c8an01269e.Suche in Google Scholar PubMed

[3] D. Xu, X. Huang, J. Guo, and X. Ma, “Automatic smartphone-based microfluidic biosensor system at the point of care,” Biosens. Bioelectron., vol. 110, pp. 78–88, 2018, https://doi.org/10.1016/j.bios.2018.03.018.Suche in Google Scholar PubMed

[4] A. Roda, E. Michelini, M. Zangheri, M. Di Fusco, D. Calabria, and P. Simoni, “Smartphone-based biosensors: a critical review and perspectives,” TrAC – Trends Anal. Chem., vol. 79, pp. 317–325, 2016, https://doi.org/10.1016/j.trac.2015.10.019.Suche in Google Scholar

[5] I. Hernández-Neuta, F. Neumann, J. Brightmeyer, et al.., “Smartphone-based clinical diagnostics: towards democratization of evidence-based health care,” J. Intern. Med., vol. 285, pp. 19–39, 2019, https://doi.org/10.1111/joim.12820.Suche in Google Scholar PubMed PubMed Central

[6] D. Zhang and Q. Liu, “Biosensors and bioelectronics on smartphone for portable biochemical detection,” Biosens. Bioelectron., vol. 75, pp. 273–284, 2016, https://doi.org/10.1016/j.bios.2015.08.037.Suche in Google Scholar PubMed

[7] L. Neubeck, N. Lowres, E. J. Benjamin, S. B. Freedman, G. Coorey, and J. Redfern, “The mobile revolution—using smartphone apps to prevent cardiovascular disease,” Nat. Rev. Cardiol., vol. 12, pp. 350–360, 2015, https://doi.org/10.1038/nrcardio.2015.34.Suche in Google Scholar PubMed

[8] S. Kanchi, M. I. Sabela, P. S. Mdluli, Inamuddin, and K. Bisetty, “Smartphone based bioanalytical and diagnosis applications: a review,” Biosens. Bioelectron., vol. 102, pp. 136–149, 2018, https://doi.org/10.1016/j.bios.2017.11.021.Suche in Google Scholar PubMed

[9] I. Navruz, A. F. Coskun, J. Wong, et al.., “Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array,” Lab Chip, vol. 13, p. 4015, 2013, https://doi.org/10.1039/c3lc50589h.Suche in Google Scholar PubMed PubMed Central

[10] H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem., vol. 83, pp. 6641–6647, 2011, https://doi.org/10.1021/ac201587a.Suche in Google Scholar PubMed PubMed Central

[11] C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-fresnel smartphone spectrometer,” Lab Chip, vol. 16, pp. 246–250, 2016, https://doi.org/10.1039/c5lc01226k.Suche in Google Scholar PubMed

[12] D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, “Mobile phone based clinical microscopy for global health applications,” PloS One, vol. 4, 2009, Art no. e6320, https://doi.org/10.1371/journal.pone.0006320.Suche in Google Scholar PubMed PubMed Central

[13] Z. Xie, H. Ge, J. Du, T. Duan, G. Yang, and Y. He, “Compartmentalizing incompatible tandem reactions in pickering emulsions to enable visual colorimetric detection of nitramine explosives using a smartphone,” Anal. Chem., vol. 90, pp. 11665–11670, 2018, https://doi.org/10.1021/acs.analchem.8b03331.Suche in Google Scholar PubMed

[14] Q. Wei, H. Qi, W. Luo, et al.., “Fluorescent imaging of single nanoparticles and viruses on a smart phone,” ACS Nano, vol. 7, pp. 9147–9155, 2013, https://doi.org/10.1021/nn4037706.Suche in Google Scholar PubMed PubMed Central

[15] A. Roda, M. Guardigli, D. Calabria, M. Maddalena Calabretta, L. Cevenini, and E. Michelini, “A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat,” Analyst, vol. 139, pp. 6494–6501, 2014, https://doi.org/10.1039/c4an01612b.Suche in Google Scholar PubMed

[16] J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, “Electrogenerated chemiluminescence detection in paper-based microfluidic sensors,” Anal. Chem., vol. 83, pp. 1300–1306, 2011, https://doi.org/10.1021/ac102392t.Suche in Google Scholar PubMed

[17] A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards, and N. M. Reis, “Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device,” Biosens. Bioelectron., vol. 70, pp. 5–14, 2015, https://doi.org/10.1016/j.bios.2015.03.006.Suche in Google Scholar PubMed

[18] P. B. Lillehoj, M. C. Huang, N. Truong, and C. M. Ho, “Rapid electrochemical detection on a mobile phone,” Lab Chip, vol. 13, pp. 2950–2955, 2013, https://doi.org/10.1039/c3lc50306b.Suche in Google Scholar PubMed

[19] M. S. Draz, K. M. Kochehbyoki, A. Vasan, et al.., “DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics,” Nat. Commun., vol. 9, p. 4282, 2018, https://doi.org/10.1038/s41467-018-06727-8.Suche in Google Scholar PubMed PubMed Central

[20] M. Greggila, Chemical Kinetics Using a Smartphone Spectrometer, Diss., The University of Akron, 2019.Suche in Google Scholar

[21] U. P. Moravapalle, A. Deshpande, A. Kapoor, R. Ramjee, and P. Ravi, “Blood count on a smartphone microscope: challenges,” in Proc. of the 18th International Workshop on Mobile Computing Systems and Applications, Sonoma, CA, USA, 2017, pp. 37–42. https://doi.org/10.1145/3032970.3032986.10.1145/3032970.3032986Suche in Google Scholar

[22] X. Huang, J. Guo, X. Wang, M. Yan, Y. Kang, and H. Yu, “A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing,” PloS One, vol. 9, 2014, Art no. e104539, https://doi.org/10.1371/journal.pone.0104539.Suche in Google Scholar PubMed PubMed Central

[23] X. Huang, Y. Jiang, X. Liu, et al.., “Machine learning based single-frame super-resolution processing for lensless blood cell counting,” Sensors, vol. 16, p. 1836, 2016, https://doi.org/10.3390/s16111836.Suche in Google Scholar PubMed PubMed Central

[24] Y. Kobori, P. Pfanner, G. S. Prins, and C. Niederberger, “Novel device for male infertility screening with single-ball lens microscope and smartphone,” Fertil. Steril., vol. 106, pp. 574–578, 2016, https://doi.org/10.1016/j.fertnstert.2016.05.027.Suche in Google Scholar PubMed

[25] M. K. Kanakasabapathy, M. Sadasivam, A. Singh, et al.., “An automated smartphone-based diagnostic assay for point-of-care semen analysis,” Sci. Transl. Med., vol. 9, 2017, Art no. eaai7863, https://doi.org/10.1126/scitranslmed.aai7863.Suche in Google Scholar PubMed PubMed Central

[26] I. L. Dimitriadis, C. Bormann, M. K. Kanakasabapathy, et al.., “Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score,” PloS One, vol. 14, 2019, Art no. e0212562, https://doi.org/10.1371/journal.pone.0212562.Suche in Google Scholar PubMed PubMed Central

[27] S. Wang, L. Zheng, G. Cai, et al.., “A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing,” Biosens. Bioelectron., vol. 140, p. 111333, 2019, https://doi.org/10.1016/j.bios.2019.111333.Suche in Google Scholar PubMed

[28] V. R. Yelleswarapu, H.-H. Jeong, S. Yadavali, and D. Issadore, “Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics,” Lab Chip, vol. 17, pp. 1083–1094, 2017, https://doi.org/10.1039/c6lc01489e.Suche in Google Scholar PubMed

[29] V. Yelleswarapu, J. R. Buser, M. Haber, J. Baron, E. Inapuri, and D. Issadore, “Mobile platform for rapid sub–picogram-per-milliliter, multiplexed, digital droplet detection of proteins,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, pp. 4489–4495, 2019, https://doi.org/10.1073/pnas.1814110116.Suche in Google Scholar PubMed PubMed Central

[30] T. F. Wu, T. M. Yen, Y. Han, Y. J. Chiu, E. Y. S. Lin, and Y. H. Lo, “A light-sheet microscope compatible with mobile devices for label-free intracellular imaging and biosensing,” Lab Chip, vol. 14, pp. 3341–3348, 2014, https://doi.org/10.1039/c4lc00257a.Suche in Google Scholar PubMed

[31] S. V. Kesavan, F. Momey, O. Cioni, et al.., “High-throughput monitoring of major cell functions by means of lensfree video microscopy,” Sci. Rep., vol. 4, p. 5942, 2014, https://doi.org/10.1038/srep05942.Suche in Google Scholar PubMed PubMed Central

[32] M. V. D’Ambrosio, M. Bakalar, S. Bennuru, et al.., “Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope,” Sci. Transl. Med., vol. 7, 2015, Art no. 286re4, https://doi.org/10.1126/scitranslmed.aaa3480.Suche in Google Scholar PubMed

[33] M. S. Draz, N. K. Lakshminaraasimulu, S. Krishnakumar, et al.., “Motion-based immunological detection of Zika virus using Pt-nanomotors and a cellphone,” ACS Nano, vol. 12, pp. 5709–5718, 2018, https://doi.org/10.1021/acsnano.8b01515.Suche in Google Scholar PubMed PubMed Central

[34] T. J. Moehling, D. H. Lee, M. E. Henderson, et al.., “A smartphone-based particle diffusometry platform for sub-attomolar detection of Vibrio cholerae in environmental water,” Biosens. Bioelectron., vol. 167, 2020, Art no. 112497, https://doi.org/10.1016/j.bios.2020.112497.Suche in Google Scholar PubMed PubMed Central

[35] M. M. Erenas, B. Carrillo-Aguilera, K. Cantrell, et al.., “Real time monitoring of glucose in whole blood by smartphone,” Biosens. Bioelectron., vol. 136, pp. 47–52, 2019, https://doi.org/10.1016/j.bios.2019.04.024.Suche in Google Scholar PubMed

[36] K. Yin, V. Pandian, K. Kadimisetty, et al.., “Real-time colorimetric quantitative molecular detection of infectious diseases on smartphone-based diagnostic platform,” Sci. Rep., vol. 10, pp. 1–9, 2020, https://doi.org/10.1038/s41598-020-65899-w.Suche in Google Scholar PubMed PubMed Central

[37] H. Guner, E. Ozgur, G. Kokturk, et al.., “A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection,” Sensor. Actuator. B Chem., vol. 239, pp. 571–577, 2017, https://doi.org/10.1016/j.snb.2016.08.061.Suche in Google Scholar

[38] F. Li, L. Guo, Z. Li, J. He, and H. Cui, “Temporal-spatial-color multiresolved chemiluminescence imaging for multiplex immunoassays using a smartphone coupled with microfluidic chip,” Anal. Chem., vol. 92, pp. 6827–6831, 2020, https://doi.org/10.1021/acs.analchem.0c01405.Suche in Google Scholar PubMed

[39] E. Lebiga, R. E. Fernandez, and A. Beskok, “Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper-plastic disposable microfluidic device using a smartphone,” Analyst, vol. 140, pp. 5006–5011, 2015, https://doi.org/10.1039/c5an00720h.Suche in Google Scholar PubMed

[40] P. Escobedo, M. M. Erenas, A. Martínez-Olmos, et al.., “General-purpose passive wireless point–of–care platform based on smartphone,” Biosens. Bioelectron., vol. 141, 2019, Art no. 111360, https://doi.org/10.1016/j.bios.2019.111360.Suche in Google Scholar PubMed

[41] A. S. Paterson, B. Raja, V. Mandadi, et al.., “A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors,” Lab Chip, vol. 17, pp. 1051–1059, 2017, https://doi.org/10.1039/c6lc01167e.Suche in Google Scholar PubMed PubMed Central

[42] D. Tian, Z. Zhu, L. Xu, H. Cong, and J. Zhu, “Intramolecular electronic coupling for persistent room-temperature luminescence for smartphone based time-gated fingerprint detection,” Mater. Horiz., vol. 6, pp. 1215–1221, 2019, https://doi.org/10.1039/c9mh00130a.Suche in Google Scholar

[43] N. Katumo, G. Gao, F. Laufer, B. S. Richards, and I. A. Howard, “Smartphone‐based luminescent thermometry via temperature‐sensitive delayed fluorescence from Gd 2 O 2 S:Eu3+,” Adv. Opt. Mater., vol. 8, 2020, Art no. 2000507, https://doi.org/10.1002/adom.202000507.Suche in Google Scholar

[44] Y. Zhou, W. Qin, C. Du, H. Gao, F. Zhu, and G. Liang, “Long‐lived room‐temperature phosphorescence for visual and quantitative detection of oxygen,” Angew. Chem., vol. 131, pp. 12230–12234, 2019, https://doi.org/10.1002/ange.201906312.Suche in Google Scholar

[45] Y. Wang, X. Liu, P. Chen, et al.., “Smartphone spectrometer for colorimetric biosensing,” Analyst, vol. 141, pp. 3233–3238, 2016, https://doi.org/10.1039/c5an02508g.Suche in Google Scholar PubMed

[46] R. Bogucki, M. Greggila, P. Mallory, et al.., “A 3D-printable dual beam spectrophotometer with multiplatform smartphone adaptor,” J. Chem. Educ., vol. 96, pp. 1527–1531, 2019, https://doi.org/10.1021/acs.jchemed.8b00870.Suche in Google Scholar

[47] K. D. Long, E. V. Woodburn, H. M. Le, U. K. Shah, S. S. Lumetta, and B. T. Cunningham, “Multimode smartphone biosensing: the transmission, reflection, and intensity spectral (TRI)-analyzer,” Lab Chip, vol. 17, pp. 3246–3257, 2017, https://doi.org/10.1039/c7lc00633k.Suche in Google Scholar PubMed PubMed Central

[48] B. T. Cunningham, K. D. Long, H. Yu, et al., “Mobile biosensing using the sensing capabilities of smartphone cameras,” in 2017 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. (IMWS-AMP), Pavia, Italy, 2017, pp. 1–3.10.1109/IMWS-AMP.2017.8247439Suche in Google Scholar

[49] S. Ayas, A. Cupallari, O. O. Ekiz, Y. Kaya, and A. Dana, “Counting molecules with a mobile phone camera using plasmonic enhancement,” ACS Photonics, vol. 1, pp. 17–26, 2014, https://doi.org/10.1021/ph400108p.Suche in Google Scholar

[50] K. Trofymchuk, V. Glembockyte, L. Grabenhorst, et al., “Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope,” Nat. Commun., vol. 12, no. 1, p. 950, 2021. https://doi.org/10.1038/s41467-021-21238-9.Suche in Google Scholar PubMed PubMed Central

[51] S. Zhang, Z. Li, and Q. Wei, “Smartphone-based cytometric biosensors for point-of-care cellular diagnostics,” Nanotechnol. Precis. Eng., vol. 3, pp. 32–42, 2020, https://doi.org/10.1016/j.npe.2019.12.004.Suche in Google Scholar

[52] M. K. Kanakasabapathy, H. J. Pandya, M. S. Draz, et al.., “Rapid, label-free CD4 testing using a smartphone compatible device,” Lab Chip, vol. 17, pp. 2910–2919, 2017, https://doi.org/10.1039/c7lc00273d.Suche in Google Scholar PubMed PubMed Central

[53] H. Zhu, I. Sencan, J. Wong, et al.., “Cost-effective and rapid blood analysis on a cell-phone,” Lab Chip, vol. 13, pp. 1282–1288, 2013, https://doi.org/10.1039/c3lc41408f.Suche in Google Scholar PubMed PubMed Central

[54] S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence-and magnetophoresis-based cytometry,” Lab Chip, vol. 17, pp. 2839–2851, 2017, https://doi.org/10.1039/c7lc00706j.Suche in Google Scholar PubMed

[55] S. A. Lee and C. Yang, “A smartphone-based chip-scale microscope using ambient illumination,” Lab Chip, vol. 14, pp. 3056–3063, 2014, https://doi.org/10.1039/c4lc00523f.Suche in Google Scholar PubMed PubMed Central

[56] H. Im, C. M. Castro, H. Shao, et al.., “Digital diffraction analysis enables low-cost molecular diagnostics on a smartphone,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, pp. 5613–5618, 2015, https://doi.org/10.1073/pnas.1501815112.Suche in Google Scholar PubMed PubMed Central

[57] M. S. Draz, A. Vasan, A. Muthupandian, et al.., “Virus detection using nanoparticles and deep neural network–enabled smartphone system,” Sci. Adv., vol. 6, 2020, Art no. eabd5354, https://doi.org/10.1126/sciadv.abd5354.Suche in Google Scholar PubMed PubMed Central

[58] V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva,” Lab Chip, vol. 13, p. 3232, 2013, https://doi.org/10.1039/c3lc50431j.Suche in Google Scholar PubMed

[59] L. Shen, J. A. Hagen, and I. Papautsky, “Point-of-care colorimetric detection with a smartphone,” Lab Chip, vol. 12, pp. 4240–4243, 2012, https://doi.org/10.1039/c2lc40741h.Suche in Google Scholar PubMed

[60] S. C. Kim, U. M. Jalal, S. B. Im, S. Ko, and J. S. Shim, “A smartphone-based optical platform for colorimetric analysis of microfluidic device,” Sensor. Actuator. B Chem., vol. 239, pp. 52–59, 2017, https://doi.org/10.1016/j.snb.2016.07.159.Suche in Google Scholar

[61] K. E. McCracken, T. Tat, V. Paz, and J. Y. Yoon, “Smartphone-based fluorescence detection of bisphenol A from water samples,” RSC Adv., vol. 7, pp. 9237–9243, 2017, https://doi.org/10.1039/c6ra27726h.Suche in Google Scholar

[62] S. Cho, A. Islas-Robles, A. M. Nicolini, T. J. Monks, and J. Y. Yoon, “In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope,” Biosens. Bioelectron., vol. 86, pp. 697–705, 2016, https://doi.org/10.1016/j.bios.2016.07.015.Suche in Google Scholar PubMed PubMed Central

[63] A. K. Yetisen, N. Jiang, A. Tamayol, et al.., “Paper-based microfluidic system for tear electrolyte analysis,” Lab Chip, vol. 17, pp. 1137–1148, 2017, https://doi.org/10.1039/c6lc01450j.Suche in Google Scholar PubMed PubMed Central

[64] B. Coleman, C. Coarsey, M. A. Kabir, and W. Asghar, “Point-of-care colorimetric analysis through smartphone video,” Sensor. Actuator. B Chem., vol. 282, pp. 225–231, 2019, https://doi.org/10.1016/j.snb.2018.11.036.Suche in Google Scholar PubMed PubMed Central

[65] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev., vol. 108, pp. 462–493, 2008, https://doi.org/10.1021/cr068107d.Suche in Google Scholar PubMed

[66] S. Dutta, K. Saikia, and P. Nath, “Smartphone based LSPR sensing platform for bio-conjugation detection and quantification,” RSC Adv., vol. 6, pp. 21871–21880, 2016, https://doi.org/10.1039/c6ra01113f.Suche in Google Scholar

[67] P. Preechaburana, M. C. Gonzalez, A. Suska, and D. Filippini, “Surface plasmon resonance chemical sensing on cell phones,” Angew. Chem. Int. Ed., vol. 51, pp. 11585–11588, 2012, https://doi.org/10.1002/anie.201206804.Suche in Google Scholar PubMed

[68] T. H. Fereja, S. A. Kitte, W. Gao, et al.., “Artesunate-luminol chemiluminescence system for the detection of hemin,” Talanta, vol. 204, pp. 379–385, 2019, https://doi.org/10.1016/j.talanta.2019.06.007.Suche in Google Scholar PubMed

[69] M. Zangheri, L. Cevenini, L. Anfossi, et al.., “A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection,” Biosens. Bioelectron., vol. 64, pp. 63–68, 2015, https://doi.org/10.1016/j.bios.2014.08.048.Suche in Google Scholar PubMed

[70] G. A. Posthuma-Trumpie, J. Korf, and A. Van Amerongen, “Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,” Anal. Bioanal. Chem., vol. 393, pp. 569–582, 2009, https://doi.org/10.1007/s00216-008-2287-2.Suche in Google Scholar PubMed

[71] M. K. Haleyur Giri Setty and I. K. Hewlett, “Point of care technologies for HIV,” AIDS Res. Treat., vol. 2014, pp. 1–20, 2014, https://doi.org/10.1155/2014/497046.Suche in Google Scholar PubMed PubMed Central

[72] K. H. Foysal, S. E. Seo, M. J. Kim, O. S. Kwon, and J. W. Chong, “Analyte quantity detection from lateral flow assay using a smartphone,” Sensors, vol. 19, p. 4812, 2019, https://doi.org/10.3390/s19214812.Suche in Google Scholar PubMed PubMed Central

[73] T. H. Ulep and J. Y. Yoon, “Challenges in paper-based fluorogenic optical sensing with smartphones,” Nano Converg., vol. 5, pp. 1–11, 2018, https://doi.org/10.1186/s40580-018-0146-1.Suche in Google Scholar PubMed PubMed Central

[74] Y. Wang, N. Sayyadi, X. Zheng, et al.., “Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region,” Lab Chip, vol. 20, pp. 655–664, 2020, https://doi.org/10.1039/c9lc00895k.Suche in Google Scholar PubMed

[75] Y. Lu, J. Lu, J. Zhao, et al.., “On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays,” Nat. Commun., vol. 5, pp. 1–8, 2014, https://doi.org/10.1038/ncomms4741.Suche in Google Scholar PubMed PubMed Central

[76] Z. Zhu, “Smartphone-based apparatus for measuring upconversion luminescence lifetimes,” Anal. Chim. Acta, vol. 1054, pp. 122–127, 2019, https://doi.org/10.1016/j.aca.2018.12.016.Suche in Google Scholar PubMed

[77] L. A. Cole, J. M. Sutton-Riley, S. A. Khanlian, M. Borkovskaya, B. B. Rayburn, and W. F. Rayburn, “Sensitivity of over-the-counter pregnancy tests: comparison of utility and marketing messages,” J. Am. Pharm. Assoc., vol. 45, pp. 608–615, 2005, https://doi.org/10.1331/1544345055001391.Suche in Google Scholar PubMed

[78] S. Johnson, M. Cushion, S. Bond, S. Godbert, and J. Pike, “Comparison of analytical sensitivity and women’s interpretation of home pregnancy tests,” Clin. Chem. Lab. Med., vol. 53, pp. 391–402, 2015, https://doi.org/10.1515/cclm-2014-0643.Suche in Google Scholar PubMed

[79] H. Alfthan, C. Haglund, J. Dabek, and U. H. Stenman, “Concentrations of human choriogonadotropin, its β-subunit, and the core fragment of the β-subunit in serum and urine of men and nonpregnant women,” Clin. Chem., vol. 38, pp. 1981–1987, 1992, https://doi.org/10.1093/clinchem/38.10.1981.Suche in Google Scholar

[80] J. Hampl, M. Hall, N. A. Mufti, et al.., “Upconverting phosphor reporters in immunochromatographic assays,” Anal. Biochem., vol. 288, pp. 176–187, 2001, https://doi.org/10.1006/abio.2000.4902.Suche in Google Scholar PubMed

[81] L. A. Cole, “The utility of six over-the-counter (home) pregnancy tests,” Clin. Chem. Lab. Med., vol. 49, pp. 1317–1322, 2011, https://doi.org/10.1515/cclm.2011.211.Suche in Google Scholar

[82] D. L. Ma, V. P. Y. Ma, D. S. H. Chan, K. H. Leung, H. Z. He, and C. H. Leung, “Recent advances in luminescent heavy metal complexes for sensing,” Coord. Chem. Rev., vol. 256, pp. 3087–3113, 2012, https://doi.org/10.1016/j.ccr.2012.07.005.Suche in Google Scholar

[83] A. Thibon and V. C. Pierre, “Principles of responsive lanthanide-based luminescent probes for cellular imaging,” Anal. Bioanal. Chem., vol. 394, pp. 107–120, 2009, https://doi.org/10.1007/s00216-009-2683-2.Suche in Google Scholar

[84] M. P. Lowe and D. Parker, “PH switched sensitisation of europium(III) by a dansyl group,” Inorg. Chim. Acta., vol. 317, pp. 163–173, 2001.10.1016/S0020-1693(01)00346-2Suche in Google Scholar

[85] A. Scheeline, “Teaching, learning, and using spectroscopy with commercial, off-the-shelf technology,” Appl. Spectrosc., vol. 64, pp. 256A–268A, 2010, https://doi.org/10.1366/000370210792434378.Suche in Google Scholar PubMed

[86] D. Gallegos, K. D. Long, H. Yu, et al.., “Label-free biodetection using a smartphone,” Lab Chip, vol. 13, p. 2124, 2013, https://doi.org/10.1039/c3lc40991k.Suche in Google Scholar PubMed

[87] H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Anal. Chem., vol. 86, pp. 8805–8813, 2014, https://doi.org/10.1021/ac502080t.Suche in Google Scholar PubMed

[88] L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron., vol. 87, pp. 686–692, 2017, https://doi.org/10.1016/j.bios.2016.09.021.Suche in Google Scholar PubMed

[89] D. Jian, B. Wang, H. Huang, et al.., “Sunlight based handheld smartphone spectrometer,” Biosens. Bioelectron., vol. 143, 2019, Art no. 111632, https://doi.org/10.1016/j.bios.2019.111632.Suche in Google Scholar PubMed

[90] M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Optical fiber smartphone spectrometer,” Opt. Lett., vol. 41, p. 2237, 2016, https://doi.org/10.1364/ol.41.002237.Suche in Google Scholar

[91] L.-J. Wang, Y.-C. Chang, X. Ge, et al.., “Smartphone optosensing platform using a DVD grating to detect neurotoxins,” ACS Sens., vol. 1, pp. 366–373, 2016, https://doi.org/10.1021/acssensors.5b00204.Suche in Google Scholar

[92] M. A. Hossain, J. Canning, K. Cook, S. Ast, P. J. Rutledge, and A. Jamalipour, “Absorption and fluorescence spectroscopy on a smartphone,” in Fifth Asia-Pacific Optical Sensors Conference, vol. 9655, B. Lee, S.-B. Lee, and Y. Rao, Eds., Jeju, Korea, SPIE, 2015, p. 96551Z.10.1117/12.2184354Suche in Google Scholar

[93] A. Das, T. Swedish, A. Wahi, et al., “Mobile phone based mini-spectrometer for rapid screening of skin cancer,” in Next-Generation Spectroscopic Technologies VIII, vol. 9482, M. A. Druy, R. A. Crocombe, and D. P. Bannon, Eds., Bellingham, WA, USA, SPIE, 2015, p. 94820M.10.1117/12.2182191Suche in Google Scholar

[94] L. Kong, Y. Gan, T. Liang, et al.., “A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid,” Anal. Chim. Acta, vol. 1093, pp. 150–159, 2020, https://doi.org/10.1016/j.aca.2019.09.071.Suche in Google Scholar PubMed

[95] K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instrument for portable enzyme-linked immunosorbent assays,” Biomed. Opt. Express, vol. 5, p. 3792, 2014, https://doi.org/10.1364/boe.5.003792.Suche in Google Scholar PubMed PubMed Central

[96] D. M. Rissin, C. W. Kan, T. G. Campbell, et al.., “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol., vol. 28, pp. 595–599, 2010, https://doi.org/10.1038/nbt.1641.Suche in Google Scholar PubMed PubMed Central

[97] L. Cohen, M. R. Hartman, A. Amardey-Wellington, and D. R. Walt, “Digital direct detection of MicroRNAs using single molecule arrays,” Nucleic Acids Res., vol. 45, p. e137, 2017, https://doi.org/10.1093/nar/gkx542.Suche in Google Scholar PubMed PubMed Central

[98] K. O. Nagata, C. Nakada, R. S. Kasai, A. Kusumi, and K. Ueda, “ABCA1 dimer–monomer interconversion during HDL generation revealed by single-molecule imaging,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, pp. 5034–5039, 2013, https://doi.org/10.1073/pnas.1220703110.Suche in Google Scholar PubMed PubMed Central

[99] J. Eid, A. Fehr, J. Gray, et al.., “Real-time DNA sequencing from single polymerase molecules,” Science, vol. 323, pp. 133–138, 2009, https://doi.org/10.1126/science.1162986.Suche in Google Scholar PubMed

[100] Q. Wei, G. Acuna, S. Kim, et al.., “Plasmonics enhanced smartphone fluorescence microscopy,” Sci. Rep., vol. 7, pp. 1–10, 2017, https://doi.org/10.1038/s41598-017-02395-8.Suche in Google Scholar PubMed PubMed Central

[101] C. Vietz, M. L. Schütte, Q. Wei, et al.., “Benchmarking smartphone fluorescence-based microscopy with dna origami nanobeads: reducing the gap toward single-molecule sensitivity,” ACS Omega, vol. 4, pp. 637–642, 2019, https://doi.org/10.1021/acsomega.8b03136.Suche in Google Scholar PubMed PubMed Central

Received: 2021-02-15
Accepted: 2021-05-07
Published Online: 2021-06-03
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2021-0009/pdf
Button zum nach oben scrollen