Home Portable magnetic levitation technologies
Article
Licensed
Unlicensed Requires Authentication

Portable magnetic levitation technologies

  • M. Munzer Alseed , Sajjad Rahmani Dabbagh , Peng Zhao ORCID logo , Oguzhan Ozcan and Savas Tasoglu EMAIL logo
Published/Copyright: May 10, 2021
Become an author with De Gruyter Brill

Abstract

Magnetic levitation (MagLev) is a density-based method which uses magnets and a paramagnetic medium to suspend multiple objects simultaneously as a result of an equilibrium between gravitational, buoyancy, and magnetic forces acting on the particle. Early MagLev setups were bulky with a need for optical or fluorescence microscopes for imaging, confining portability, and accessibility. Here, we review design criteria and the most recent end-applications of portable smartphone-based and self-contained MagLev setups for density-based sorting and analysis of microparticles. Additionally, we review the most recent end applications of those setups, including disease diagnosis, cell sorting and characterization, protein detection, and point-of-care testing.


Corresponding author: Savas Tasoglu, Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, 34684 Istanbul, Turkey; Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey; Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey; Koc University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey; and Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey, E-mail:

Funding source: Tubitak 2232 International Fellowship for Outstanding Researchers Award

Award Identifier / Grant number: 118C391

Funding source: Alexander von Humboldt Research Fellowship for Experienced Researchers

Funding source: Marie Skłodowska-Curie Individual Fellowship

Award Identifier / Grant number: 101003361

Funding source: Royal Academy Newton-Katip Çelebi Transforming Systems Through Partnership Award

Award Identifier / Grant number: 120N019

Acknowledgments

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by the Tubitak 2232 International Fellowship for Outstanding Researchers Award (118C391), Alexander von Humboldt Research Fellowship for Experienced Researchers, Marie Skłodowska-Curie Individual Fellowship (101003361), and Royal Academy Newton-Katip Çelebi Transforming Systems Through Partnership Award (120N019). This work was partially supported by Science Academy’s Young Scientist Awards Program (BAGEP), Outstanding Young Scientists Awards (GEBİP), and Bilim Kahramanlari Association The Young Scientist Award. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the TÜBİTAK.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. R. Philips, B. Gleich, G. A. Paredes-Juarez, A. Antonelli, M. Magnani, and J. W. Bulte, “Magnetic manipulation of blood conductivity with superparamagnetic iron oxide-loaded erythrocytes,” ACS Appl. Mater. Interfaces, vol. 11, no. 12, pp. 11194–11201, 2019. https://doi.org/10.1021/acsami.9b00394.Search in Google Scholar

[2] S. L. Sparks, O. D. Brimhall, S. C. Peterson, and C. D. Baker, “Apparatus and methods for achieving urinary continence,” Google Patents, 1989.Search in Google Scholar

[3] V. P. Zharov, “Device and method for in vivo noninvasive magnetic manipulation of circulating objects in bioflows,” Google Patents, 2015.Search in Google Scholar

[4] S. Wang, S. Tasoglu, P. Z. Chen, et al., “Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care,” Sci. Rep., vol. 4, no. 1, pp. 1–9, 2014. https://doi.org/10.1007/978-3-642-27758-0_992-3.Search in Google Scholar

[5] J. Haverkort, S. Kenjereš, and C. Kleijn, “Magnetic particle motion in a Poiseuille flow,” Phys. Rev. E, vol. 80, no. 1, 2009, Art no. 016302. https://doi.org/10.1103/physreve.80.016302.Search in Google Scholar

[6] M. Takashima, “The stability of the modified plane Poiseuille flow in the presence of a transverse magnetic field,” Fluid Dynam. Res., vol. 17, no. 6, p. 293, 1996. https://doi.org/10.1016/0169-5983(95)00038-0.Search in Google Scholar

[7] J. M. Martel and M. Toner, “Inertial focusing in microfluidics,” Annu. Rev. Biomed. Eng., vol. 16, pp. 371–396, 2014. https://doi.org/10.1146/annurev-bioeng-121813-120704.Search in Google Scholar PubMed PubMed Central

[8] A. J. Chung, “A minireview on inertial microfluidics fundamentals: inertial particle focusing and secondary flow,” BioChip J., vol. 13, no. 1, pp. 53–63, 2019. https://doi.org/10.1007/s13206-019-3110-1.Search in Google Scholar

[9] J. Xie, P. Zhao, C. Zhang, J. Fu, and L.-S. Turng, “Current state of magnetic levitation and its applications in polymers: a review,” Sensor. Actuator. B Chem., vol. 333, 2021, Art no. 129533. https://doi.org/10.1016/j.snb.2021.129533.Search in Google Scholar

[10] F. Ozefe and A. A. Yildiz, “Smartphone-assisted hepatitis C detection assay based on magnetic levitation,” Analyst, vol. 145, no. 17, pp. 5816–5825, 2020. https://doi.org/10.1039/d0an01111h.Search in Google Scholar PubMed

[11] A. R. Kose, B. Fischer, L. Mao, and H. Koser, “Label-free cellular manipulation and sorting via biocompatible ferrofluids,” Proc. Natl. Acad. Sci. Unit. States Am., vol. 106, no. 51, pp. 21478–21483, 2009. https://doi.org/10.1073/pnas.0912138106.Search in Google Scholar PubMed PubMed Central

[12] S. Tasoglu, J. A. Khoory, H. C. Tekin, et al., “Levitational image cytometry with temporal resolution,” Adv. Mater., vol. 27, no. 26, pp. 3901–3908, 2015. https://doi.org/10.1002/adma.201405660.Search in Google Scholar PubMed PubMed Central

[13] S. Tasoglu, C. H. Yu, V. Liaudanskaya, S. Guven, C. Migliaresi, and U. Demirci, “Magnetic levitational assembly for living material fabrication,” Adv. Healthc. Mater., vol. 4, no. 10, pp. 1469–1476, 2015. https://doi.org/10.1002/adhm.201500092.Search in Google Scholar PubMed PubMed Central

[14] F. Ozefe and A. A. Yildiz, Magnetic Levitation Based Applications in Bioscience. Magnetic Levitation, London, UK, IntechOpen, 2020.10.5772/intechopen.92148Search in Google Scholar

[15] S. Yaman and H. C. Tekin, “Magnetic susceptibility-based protein detection using magnetic levitation,” Anal. Chem., vol. 92, no. 18, pp. 12556–12563, 2020. https://doi.org/10.1021/acs.analchem.0c02479.Search in Google Scholar PubMed

[16] H.-W. Lee, K.-C. Kim, and J. Lee, “Review of maglev train technologies,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1917–1925, 2006.10.1109/TMAG.2006.875842Search in Google Scholar

[17] F. Werfel, U. Floegel-Delor, R. Rothfeld, et al., “Superconductor bearings, flywheels and transportation,” Supercond. Sci. Technol., vol. 25, no. 1, 2011, Art no. 014007. https://doi.org/10.1088/0953-2048/25/1/014007.Search in Google Scholar

[18] S. Ge, A. Nemiroski, K. A. Mirica, et al., “Magnetic levitation in chemistry, materials science, and biochemistry,” Angew. Chem. Int. Ed., vol. 59, no. 41, pp. 17810–17855, 2020. https://doi.org/10.1002/anie.201903391.Search in Google Scholar PubMed

[19] M. Anil-Inevi, E. Yilmaz, O. Sarigil, H. C. Tekin, and E. Ozcivici, Single Cell Densitometry and Weightlessness Culture of Mesenchymal Stem Cells Using Magnetic Levitation. Stem Cell Nanotechnology, Berlin, Germany, Springer, 2019, pp. 15–25.10.1007/7651_2019_231Search in Google Scholar PubMed

[20] W. Braunbek, “Freischwebende Körper im elektrischen und magnetischen Feld,” Z. Phys., vol. 112, nos 11–12, pp. 753–763, 1939. https://doi.org/10.1007/bf01339979.Search in Google Scholar

[21] R. D. Waldron, “Diamagnetic levitation using pyrolytic graphite,” Rev. Sci. Instrum., vol. 37, no. 1, pp. 29–35, 1966. https://doi.org/10.1063/1.1719946.Search in Google Scholar

[22] I. Simon, A. G. Emslie, P. F. Strong, and R. K. McConnellJr., “Sensitive tiltmeter utilizing a diamagnetic suspension,” Rev. Sci. Instrum., vol. 39, no. 11, pp. 1666–1671, 1968. https://doi.org/10.1063/1.1683199.Search in Google Scholar

[23] I. Simon, “Diamagnetic accelerometer,” Google Patents, 1969.Search in Google Scholar

[24] U. Andres, Magnetohydrodynamic & Magnetohydrostatic Methods of Mineral Separation, Hoboken, New Jersey, USA, John Wiley & Sons, 1976.Search in Google Scholar

[25] Y. Ikezoe, N. Hirota, J. Nakagawa, and K. Kitazawa, “Making water levitate,” Nature, vol. 393, no. 6687, pp. 749–750, 1998. https://doi.org/10.1038/31619.Search in Google Scholar

[26] E. Beaugnon and R. Tournier, “Levitation of organic materials,” Nature, vol. 349, no. 6309, p. 470, 1991. https://doi.org/10.1038/349470a0.Search in Google Scholar

[27] A. Catherall, L. Eaves, P. King, and S. Booth, “Floating gold in cryogenic oxygen,” Nature, vol. 422, no. 6932, p. 579, 2003. https://doi.org/10.1038/422579a.Search in Google Scholar PubMed

[28] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and Y. Matsuura, “New material for permanent magnets on a base of Nd and Fe,” J. Appl. Phys., vol. 55, no. 6, pp. 2083–2087, 1984. https://doi.org/10.1063/1.333572.Search in Google Scholar

[29] J. J. Croat, J. F. Herbst, R. W. Lee, and F. E. Pinkerton, “Pr–Fe and Nd–Fe‐based materials: a new class of high‐performance permanent magnets,” J. Appl. Phys., vol. 55, no. 6, pp. 2078–2082, 1984. https://doi.org/10.1063/1.333571.Search in Google Scholar

[30] K. A. Mirica, F. Ilievski, A. K. Ellerbee, S. S. Shevkoplyas, and G. M. Whitesides, “Using magnetic levitation for three dimensional self‐assembly,” Adv. Mater., vol. 23, no. 36, pp. 4134–4140, 2011. https://doi.org/10.1002/adma.201101917.Search in Google Scholar PubMed

[31] K. A. Mirica, S. S. Shevkoplyas, S. T. Phillips, M. Gupta, and G. M. Whitesides, “Measuring densities of solids and liquids using magnetic levitation: fundamentals,” J. Am. Chem. Soc., vol. 131, no. 29, pp. 10049–10058, 2009. https://doi.org/10.1021/ja900920s.Search in Google Scholar PubMed

[32] K. A. Mirica, S. T. Phillips, C. R. Mace, and G. M. Whitesides, “Magnetic levitation in the analysis of foods and water,” J. Agric. Food Chem., vol. 58, no. 11, pp. 6565–6569, 2010. https://doi.org/10.1021/jf100377n.Search in Google Scholar PubMed

[33] M. R. Lockett, K. A. Mirica, C. R. Mace, R. D. Blackledge, and G. M. Whitesides, “Analyzing forensic evidence based on density with magnetic levitation,” J. Forensic Sci., vol. 58, no. 1, pp. 40–45, 2013. https://doi.org/10.1111/j.1556-4029.2012.02221.x.Search in Google Scholar PubMed

[34] K. A. Mirica, S. T. Phillips, S. S. Shevkoplyas, and G. M. Whitesides, “Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports,” J. Am. Chem. Soc., vol. 130, no. 52, pp. 17678–17680, 2008. https://doi.org/10.1021/ja8074727.Search in Google Scholar PubMed

[35] M. B. Atkinson, D. K. Bwambok, J. Chen, et al., “Using magnetic levitation to separate mixtures of crystal polymorphs,” Angew. Chem., vol. 125, no. 39, pp. 10398–10401, 2013. https://doi.org/10.1002/ange.201305549.Search in Google Scholar

[36] A. Winkleman, R. Perez-Castillejos, K. L. Gudiksen, S. T. Phillips, M. Prentiss, and G. M. Whitesides, “Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions,” Anal. Chem., vol. 79, no. 17, pp. 6542–6550, 2007. https://doi.org/10.1021/ac070500b.Search in Google Scholar PubMed

[37] A. B. Subramaniam, M. Gonidec, N. D. Shapiro, K. M. Kresse, and G. M. Whitesides, “Metal-amplified density assays,(MADAs), including a density-linked immunosorbent assay (DeLISA),” Lab Chip, vol. 15, no. 4, pp. 1009–1022, 2015. https://doi.org/10.1039/c4lc01161a.Search in Google Scholar PubMed

[38] S. Tasoglu, D. Kavaz, U. A. Gurkan, et al., “Paramagnetic levitational assembly of hydrogels,” Adv. Mater., vol. 25, no. 8, pp. 1137–1143, 2013. https://doi.org/10.1002/adma.201200285.Search in Google Scholar PubMed PubMed Central

[39] S. Knowlton, C. H. Yu, N. Jain, I. C. Ghiran, and S. Tasoglu, “Smart-phone based magnetic levitation for measuring densities,” PloS One, vol. 10, no. 8, 2015, Art no. e0134400. https://doi.org/10.1371/journal.pone.0134400.Search in Google Scholar PubMed PubMed Central

[40] C. J. Luby, B. P. Coughlin, and C. R. Mace, “Enrichment and recovery of mammalian cells from contaminated cultures using aqueous two-phase systems,” Anal. Chem., vol. 90, no. 3, pp. 2103–2110, 2018. https://doi.org/10.1021/acs.analchem.7b04352.Search in Google Scholar PubMed

[41] A. A. Kumar, M. R. Patton, J. W. Hennek, et al., “Density-based separation in multiphase systems provides a simple method to identify sickle cell disease,” Proc. Natl. Acad. Sci. Unit. States Am., vol. 111, no. 41, pp. 14864–14869, 2014. https://doi.org/10.1073/pnas.1414739111.Search in Google Scholar PubMed PubMed Central

[42] T. Kenner, “The measurement of blood density and its meaning,” Basic Res. Cardiol., vol. 84, no. 2, pp. 111–124, 1989. https://doi.org/10.1007/bf01907921.Search in Google Scholar

[43] R. C. Miller, E. Brindle, D. J. Holman, et al., “Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations,” Clin. Chem., vol. 50, no. 5, pp. 924–932, 2004. https://doi.org/10.1373/clinchem.2004.032292.Search in Google Scholar PubMed

[44] S. M. Knowlton, I. Sencan, Y. Aytar, et al., “Sickle cell detection using a smartphone,” Sci. Rep., vol. 5, no. 1, pp. 1–11, 2015. https://doi.org/10.1038/srep15022.Search in Google Scholar PubMed PubMed Central

[45] R. Amin, S. Knowlton, J. Dupont, et al., “3D-printed smartphone-based device for label-free cell separation,” J. 3D Print. Med., vol. 1, no. 3, pp. 155–164, 2017. https://doi.org/10.2217/3dp-2016-0007.Search in Google Scholar

[46] M. Baday, S. Calamak, N. G. Durmus, R. W. Davis, L. M. Steinmetz, and U. Demirci, “Integrating cell phone imaging with magnetic levitation (i‐LEV) for label‐free blood analysis at the point‐of‐living,” Small, vol. 12, no. 9, pp. 1222–1229, 2016. https://doi.org/10.1002/smll.201501845.Search in Google Scholar PubMed PubMed Central

[47] E. J. Felton, A. Velasquez, S. Lu, et al., “Detection and quantification of subtle changes in red blood cell density using a cell phone,” Lab Chip, vol. 16, no. 17, pp. 3286–3295, 2016. https://doi.org/10.1039/c6lc00415f.Search in Google Scholar PubMed

[48] R. Amin, S. Knowlton, B. Yenilmez, A. Hart, A. Joshi, and S. Tasoglu, “Smart-phone attachable, flow-assisted magnetic focusing device,” RSC Adv., vol. 6, no. 96, pp. 93922–93931, 2016. https://doi.org/10.1039/c6ra19483d.Search in Google Scholar

[49] H-S. Han and D-S. Kim, Magnetic Levitation, Netherlands, Springer, 2016.10.1007/978-94-017-7524-3Search in Google Scholar

[50] C. Zhang, P. Zhao, F. Gu, et al., “Single-ring magnetic levitation configuration for object manipulation and density-based measurement,” Anal. Chem., vol. 90, no. 15, pp. 9226–9233, 2018. https://doi.org/10.1021/acs.analchem.8b01724.Search in Google Scholar PubMed

[51] S. Knowlton, A. Joshi, P. Syrrist, A. F. Coskun, and S. Tasoglu, “3D-printed smartphone-based point of care tool for fluorescence-and magnetophoresis-based cytometry,” Lab Chip, vol. 17, no. 16, pp. 2839–2851, 2017. https://doi.org/10.1039/c7lc00706j.Search in Google Scholar PubMed

[52] B. Yenilmez, S. Knowlton, and S. Tasoglu, “Self‐contained handheld magnetic platform for point of care cytometry in biological samples,” Adv. Mater. Technol., vol. 1, no. 9, 2016, Art no. 1600144. https://doi.org/10.1002/admt.201600144.Search in Google Scholar

[53] D. K. Bwambok, M. M. Thuo, M. B. Atkinson, K. A. Mirica, N. D. Shapiro, and G. M. Whitesides, “Paramagnetic ionic liquids for measurements of density using magnetic levitation,” Anal. Chem., vol. 85, no. 17, pp. 8442–8447, 2013. https://doi.org/10.1021/ac401899u.Search in Google Scholar PubMed

[54] N. G. Durmus, H. C. Tekin, S. Guven, et al., “Magnetic levitation of single cells,” Proc. Natl. Acad. Sci. Unit. States Am., vol. 112, no. 28, pp. E3661–E3668, 2015. https://doi.org/10.1073/pnas.1509250112.Search in Google Scholar PubMed PubMed Central

[55] A. Winkleman, K. L. Gudiksen, D. Ryan, G. M. Whitesides, D. Greenfield, and M. Prentiss, “A magnetic trap for living cells suspended in a paramagnetic buffer,” Appl. Phys. Lett., vol. 85, no. 12, pp. 2411–2413, 2004. https://doi.org/10.1063/1.1794372.Search in Google Scholar

[56] N. D. Shapiro, K. A. Mirica, S. Soh, et al., “Measuring binding of protein to gel-bound ligands using magnetic levitation,” J. Am. Chem. Soc., vol. 134, no. 12, pp. 5637–5646, 2012. https://doi.org/10.1021/ja211788e.Search in Google Scholar PubMed PubMed Central

[57] B. Yenilmez, S. Knowlton, C. H. Yu, M. M. Heeney, and S. Tasoglu, “Label‐free sickle cell disease diagnosis using a low‐cost, handheld platform,” Adv. Mater. Technol., vol. 1, no. 5, 2016, Art no. 1600100. https://doi.org/10.1002/admt.201600100.Search in Google Scholar

[58] N. D. Shapiro, S. Soh, K. A. Mirica, and G. M. Whitesides, “Magnetic levitation as a platform for competitive protein–ligand binding assays,” Anal. Chem., vol. 84, no. 14, pp. 6166–6172, 2012. https://doi.org/10.1021/ac301121z.Search in Google Scholar PubMed PubMed Central

[59] S. R. Dabbagh, M. R. Sarabi, R. Rahbarghazi, E. Sokullu, A. K. Yetisen, and S. Tasoglu, “3D-Printed Microneedles in Biomedical Applications,” iScience, vol. 24, 2020, Art no. 102012. https://doi.org/10.1016/j.isci.2020.102012.Search in Google Scholar PubMed PubMed Central

[60] R. Amin, S. Knowlton, A. Hart, et al., “3D-printed microfluidic devices,” Biofabrication, vol. 8, no. 2, 2016, Art no. 022001. https://doi.org/10.1088/1758-5090/8/2/022001.Search in Google Scholar PubMed

[61] M. S. Andersen, E. Howard, S. Lu, et al., “Detection of membrane-bound and soluble antigens by magnetic levitation,” Lab Chip, vol. 17, no. 20, pp. 3462–3473, 2017. https://doi.org/10.1039/c7lc00402h.Search in Google Scholar PubMed PubMed Central

[62] M. R. Sarabi, N. Jiang, E. Ozturk, A. K. Yetisen, and S. Tasoglu, “Biomedical optical fibers,” Lab Chip, vol. 21, no. 4, pp. 627–640, 2021.10.1039/D0LC01155JSearch in Google Scholar

[63] F. Ghaderinezhad, H. C. Koydemir, D. Tseng, et al., “Sensing of electrolytes in urine using a miniaturized paper-based device,” Sci. Rep., vol. 10, no. 1, pp. 1–9, 2020. https://doi.org/10.1038/s41598-020-70456-6.Search in Google Scholar PubMed PubMed Central

[64] S. Knowlton, A. Joshi, B. Yenilmez, et al., “Advancing cancer research using bioprinting for tumor-on-a-chip platforms,” Int. J. Bioprint., vol. 2, no. 2, pp. 3–8, 2016. https://doi.org/10.18063/ijb.2016.02.003.Search in Google Scholar

[65] Z. Luo, S. Güven, I. Gozen, et al., “Deformation of a single mouse oocyte in a constricted microfluidic channel,” Microfluid. Nanofluidics, vol. 19, no. 4, pp. 883–890, 2015. https://doi.org/10.1007/s10404-015-1614-0.Search in Google Scholar PubMed PubMed Central

[66] S. R. Dabbagh, F. Rabbi, Z. Doğan, A. K. Yetisen, and S. Tasoglu, “Machine learning-enabled multiplexed microfluidic sensors,” Biomicrofluidics, vol. 14, no. 6, 2020, Art no. 061506. https://doi.org/10.1063/5.0025462.Search in Google Scholar PubMed PubMed Central

[67] J. Riordon, D. Sovilj, S. Sanner, D. Sinton, and E. W. Young, “Deep learning with microfluidics for biotechnology,” Trends Biotechnol., vol. 37, no. 3, pp. 310–324, 2019. https://doi.org/10.1016/j.tibtech.2018.08.005.Search in Google Scholar PubMed

Received: 2021-02-16
Accepted: 2021-04-19
Published Online: 2021-05-10
Published in Print: 2021-04-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/aot-2021-0010/html
Scroll to top button