Startseite Interference-based laser-induced micro-plasma ablation of glass
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interference-based laser-induced micro-plasma ablation of glass

  • Sabri Alamri

    Sabri Alamri is a doctoral researcher in the group of Surface Functionalization at the Fraunhofer IWS (Germany), and at the Institute for Manufacturing Technology of the Technical University of Dresden since 03/2016. His main expertise is in the field of laser surface structuring, in particular Direct Laser Interference Patterning, optical design and analytical methods. Currently his research interests are focused in the fabrication of functional surfaces employing polymeric and non-metallic materials, as well as in the modelling of laser-matter interaction processes.

    ORCID logo EMAIL logo
    , Paul A. Sürmann

    Paul A. Sürmann is a student of production engineering at the Mechanical Engineering faculty of the Technical University of Dresden since 10/2013 and is a student researcher at the Fraunhofer IWS (Germany) since 2019. His research topic focusses on the field of laser micro texturing of transparent materials surfaces with Direct Laser Interference Patterning employing direct and indirect structuring approaches.

    , Andrés F. Lasagni

    Andrés F. Lasagni received in 2002 his MS degree in Chemical Engineering from the Comahue National University (Argentina). From 2003 to 2005 he carried out his PhD at Saarland University (Germany) and in 2007–2008 he conducted a postdoctoral stay at the Georgia Institute of Technology and the University of Michigan. Since 2012 he is professor at the Technische Unversität Dresden (Germany). A. F. L. is author/coauthor of more than 250 publications and has been awarded with several prizes including the German High Tech Champion in Photovoltaic 2011, the Green Photonic Award and the FEMS Innovation award 2017.

    und Tim Kunze

    Tim Kunze received his MS degree in Computational Science from the TU in Chemnitz (Germany) in 2008. From 2009 to 2013 he carried out his PhD at TU Dresden (Germany) focusing on tribology simulation. In 2014, he joined the Fraunhofer Institute of Material and Beam Technology (IWS) in Dresden as a senior researcher involved in the R&D of Direct Laser Interference Patterning technology. In 2016, his contribution within the project group DLIP was awarded with the 2nd place of the ‘Berthold Leibinger Innovationspreis 2016’ (Germany). Since September 2017, Dr. Kunze leads the group surface functionalization at Fraunhofer IWS Dresden.

Veröffentlicht/Copyright: 1. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Glass is one of the most important technical surfaces for numerous applications in automotive, optical, and consumer industries. In addition, by producing textured surfaces with periodic features in the micrometre range, new functions can be created. Although laser-based methods have shown to be capable to produce structured materials in a wide amount of materials, due to its transparency large bandgap dielectrics can be only processed in a controlled manner by employing high-power ultra-short pulsed lasers, thus limiting the employable laser sources. In this article, an interference-based method for the texturing of soda-lime glass using a 15 ns pulsed (1 kHz repetition rate) infrared (1053 nm) laser is proposed, which allows fabricating different periodic patterns with micrometre resolution. This method consists on irradiating a metallic absorber (stainless steel) put in direct contact with the glass sample and inducing locally an etching process on the backside of the glass. Then, the produced plasma at the interference maxima positions leads to the local fabrication of well-defined periodic line-like and dot-like surface patterns. The produced patterns are characterised using white light interferometry and scanning electron microscopy.

About the authors

Sabri Alamri

Sabri Alamri is a doctoral researcher in the group of Surface Functionalization at the Fraunhofer IWS (Germany), and at the Institute for Manufacturing Technology of the Technical University of Dresden since 03/2016. His main expertise is in the field of laser surface structuring, in particular Direct Laser Interference Patterning, optical design and analytical methods. Currently his research interests are focused in the fabrication of functional surfaces employing polymeric and non-metallic materials, as well as in the modelling of laser-matter interaction processes.

Paul A. Sürmann

Paul A. Sürmann is a student of production engineering at the Mechanical Engineering faculty of the Technical University of Dresden since 10/2013 and is a student researcher at the Fraunhofer IWS (Germany) since 2019. His research topic focusses on the field of laser micro texturing of transparent materials surfaces with Direct Laser Interference Patterning employing direct and indirect structuring approaches.

Andrés F. Lasagni

Andrés F. Lasagni received in 2002 his MS degree in Chemical Engineering from the Comahue National University (Argentina). From 2003 to 2005 he carried out his PhD at Saarland University (Germany) and in 2007–2008 he conducted a postdoctoral stay at the Georgia Institute of Technology and the University of Michigan. Since 2012 he is professor at the Technische Unversität Dresden (Germany). A. F. L. is author/coauthor of more than 250 publications and has been awarded with several prizes including the German High Tech Champion in Photovoltaic 2011, the Green Photonic Award and the FEMS Innovation award 2017.

Tim Kunze

Tim Kunze received his MS degree in Computational Science from the TU in Chemnitz (Germany) in 2008. From 2009 to 2013 he carried out his PhD at TU Dresden (Germany) focusing on tribology simulation. In 2014, he joined the Fraunhofer Institute of Material and Beam Technology (IWS) in Dresden as a senior researcher involved in the R&D of Direct Laser Interference Patterning technology. In 2016, his contribution within the project group DLIP was awarded with the 2nd place of the ‘Berthold Leibinger Innovationspreis 2016’ (Germany). Since September 2017, Dr. Kunze leads the group surface functionalization at Fraunhofer IWS Dresden.

Acknowledgments

The work of A. F. L. is supported by the German Research Foundation (DFG) under Excellence Initiative program by the German federal and state governments to promote top-level research at German universities. The authors acknowledge J. Bretschneider (Fraunhofer IWS) for the EDX analyses.

  1. Author contributions: All the authors contributed equally to the scientific discussions and revision of the manuscript. S. A. designed the experiments, acquired SEM images and wrote the manuscript. P. A. S. performed the main structuring experiments and the data analysis. A. F. L. and T. K. directed the research activities.

References

[1] H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, Energy Environ. Sci. 4, 3779 (2011).10.1039/c1ee01297eSuche in Google Scholar

[2] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, et al., Mater. Sci. Eng. R Reports 69, 1 (2010).10.1016/j.mser.2010.04.001Suche in Google Scholar

[3] X. Zhang, F. Shi, J. Niu, Y. Jiang and Z. Wang, J. Mater. Chem. 18, 621 (2008).10.1039/B711226BSuche in Google Scholar

[4] A. Grosse, M. Grewe and H. Fouckhardt, J. Micromech. Microeng. 11, 257 (2001).10.1088/0960-1317/11/3/315Suche in Google Scholar

[5] T. Ujiie, T. Kikuchi, T. Ichiki and Y. Horiike, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 39, 3677 (2000).10.1143/JJAP.39.3677Suche in Google Scholar

[6] N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, Inc., Orlando, Florida, 1986).10.1016/B978-0-08-052376-7.50013-8Suche in Google Scholar

[7] Z. C. Li, Z. J. Pei and P. D. Funkenbusch, in Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 255, (2011) pp. 975–989.10.1177/2041297510393667Suche in Google Scholar

[8] L. Kuna, A. Haase, F. Reil, C. Sommer, J. R. Krenn, et al., IEEE J. Sel. Top. Quantum Electron. 15, 1250 (2009).10.1109/JSTQE.2009.2018132Suche in Google Scholar

[9] T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, et al., Appl. Opt. 55, 3502 (2016).10.1364/AO.55.003502Suche in Google Scholar PubMed

[10] D. Wortmann, J. Gottmann, N. Brandt and H. Horn-Solle, in 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS (2008).Suche in Google Scholar

[11] S. Juodkazis, SPIE Newsroom 510 (2007). Available at: https://www.researchgate.net/profile/Saulius_Juodkazis/publication/249515811_Forming_tiny_3D_structures_for_micro-_and_nanofluidics/links/5597f7f308ae99aa62ca1b36.pdf.Suche in Google Scholar

[12] S. Venkataraj, J. Wang, P. Vayalakkara and A. G. Aberle, IEEE J. Photovoltaics 3, 605 (2013).10.1109/JPHOTOV.2013.2245723Suche in Google Scholar

[13] S. Franssila, Introduction to Microfabrication (John Wiley & Sons, Ltd., Chichester, UK, 2010).10.1002/9781119990413Suche in Google Scholar

[14] M. Rothschild, in Conf. Lasers Electro-Optics Eur. - Tech. Dig. 6 (IEEE Cat. No. 98CH36178), 122 (1998).Suche in Google Scholar

[15] T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, et al., Appl. Opt. 42, 6934 (2003).10.1364/AO.42.006934Suche in Google Scholar

[16] T. Ito and S. Okazaki, Nature 406, 1027 (2000).10.1038/35023233Suche in Google Scholar

[17] D. Bäuerle, Laser Processing and Chemistry (Springer Science & Business Media, Heidelberg, 2013).Suche in Google Scholar

[18] J. Ihlemann, B. Wolff and P. Simon, Appl. Phys. A Solids Surfaces 54, 363 (1992).10.1007/BF00324203Suche in Google Scholar

[19] J. Ihlemann and B. Wolff-Rottke, Appl. Surf. Sci. 106, 282 (1996).10.1016/S0169-4332(96)00422-9Suche in Google Scholar

[20] D. Du, X. Liu, G. Korn, J. Squier and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).10.1063/1.111350Suche in Google Scholar

[21] R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, et al., Appl. Phys. Lett. 80, 353 (2002).10.1063/1.1432747Suche in Google Scholar

[22] A. Rosenfeld, M. Rohloff, S. Höhm, J. Krüger and J. Bonse, Appl. Surf. Sci. 258, 9233–9236 (2012).10.1016/j.apsusc.2011.09.076Suche in Google Scholar

[23] S. Gräf, C. Kunz and F. A. Müller, Materials 9, 476 (2016).10.3390/ma9060476Suche in Google Scholar PubMed PubMed Central

[24] J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, et al., Laser-based Micro- Nanoprocessing XI 10092, 100920N (2017).Suche in Google Scholar

[25] I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, et al., Sci. Rep. 7, 1 (2017).10.1038/s41598-016-0028-xSuche in Google Scholar PubMed PubMed Central

[26] H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, et al., J. Photochem. Photobiol. A Chem. 158, 179 (2003).10.1016/S1010-6030(03)00032-7Suche in Google Scholar

[27] T. Sato, R. Kurosaki, Y. Kawaguchi, A. Narazaki and H. Niino, J. Laser Micro Nanoeng. 5, 256 (2010).10.2961/jlmn.2010.03.0014Suche in Google Scholar

[28] H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, et al., J. Phys. Conf. Ser. 59, 539 (2007).10.1088/1742-6596/59/1/115Suche in Google Scholar

[29] K. Zimmer, R. Böhme and B. Rauschenbach, Appl. Phys. A 79, 1883 (2004).10.1007/s00339-004-2961-ySuche in Google Scholar

[30] K. Zimmer, R. Böhme, D. Ruthe and B. Rauschenbach, Appl. Phys. A 84, 455 (2006).10.1007/s00339-006-3630-0Suche in Google Scholar

[31] K. Zimmer, R. Böhme, D. Hirsch and B. Rauschenbach, J. Phys. D. Appl. Phys. 39, 4651 (2006).10.1088/0022-3727/39/21/022Suche in Google Scholar

[32] J. Wang, H. Niino and A. Yabe, Appl. Phys. A Mater. Sci. Process. 69, S271–S273 (1999).10.1007/s003390051398Suche in Google Scholar

[33] O. M. Zhigalina, D. N. Khmelenin, A. V. Atanova, N. V. Minaev, A. P. Sviridov, et al., Plasmonics 1, 1–10 (2019).Suche in Google Scholar

[34] M. Y. Tsvetkov, V. I. Yusupov, P. S. Timashev, K. M. Golant, N. V. Minaev, et al., Nanotechnol. Russ. 12, 86 (2017).10.1134/S1995078017010141Suche in Google Scholar

[35] P. Lorenz, M. Ehrhardt and K. Zimmer, Appl. Surf. Sci. 258, 9742 (2012).10.1016/j.apsusc.2012.06.023Suche in Google Scholar

[36] J. Zhang, K. Sugioka and K. Midorikawa, Appl. Phys. A Mater. Sci. Process. 67, 545 (1998).10.1007/s003390050819Suche in Google Scholar

[37] V. A. Shkuratova, G. K. Kostyuk, M. M. Sergeev, R. A. Zakoldaev and E. B. Yakovlev, Opt. Mater. Express 9, 2392 (2019).10.1364/OME.9.002392Suche in Google Scholar

[38] R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, J. Appl. Phys. 68, 775 (1990).10.1063/1.346783Suche in Google Scholar

[39] V. P. Veiko, S. A. Volkov, R. A. Zakoldaev, M. M. Sergeev, A. A. Samokhvalov, et al., Quantum Electron. 47, 842 (2017).10.1070/QEL16377Suche in Google Scholar

[40] Y. Hanada, K. Sugioka and K. Midorikawa, in High-Power Laser Ablation VI, 6261 (2006) p. 626111.10.1117/12.668667Suche in Google Scholar

[41] Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, et al., Appl. Phys. A Mater. Sci. Process 79, 1001–1003 (2004).10.1007/s00339-004-2614-1Suche in Google Scholar

[42] T. Smausz, T. Csizmadia, N. Kresz, C. Vass, Z. Márton, et al., Appl. Surf. Sci. 254, 1091 (2007).10.1016/j.apsusc.2007.08.068Suche in Google Scholar

[43] A. H. Hamdani, W. Ahmed, A. Ansar, R. Akhter, W. A. Farooq, et al., Key Eng. Mater. 442, 172 (2010).10.4028/www.scientific.net/KEM.442.172Suche in Google Scholar

[44] A. H. Hamdani, A. Nasir, S. Sarwar, A. Ansar, R. Akhter, et al., J. Phys. Conf. Ser. 439, 1 (2013).10.1088/1742-6596/439/1/012051Suche in Google Scholar

[45] Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, et al., Appl. Phys. A Mater. Sci. Process. 80, 111 (2005).10.1007/s00339-004-2909-2Suche in Google Scholar

[46] H. Chao, L. Furong, W. Min, Y. Jianwen and C. Jimin, J. Laser Appl. 24, 022005 (2012).10.2351/1.3701047Suche in Google Scholar

[47] J. Zhang, K. Sugioka and K. Midorikawa, Opt. Lett. 23, 1486 (1998).10.1364/OL.23.001486Suche in Google Scholar

[48] Y. Nakata, Adv. Opt. Techn. 2, 2–6 (2016).Suche in Google Scholar

[49] B. Voisiat, M. Gedvilas, S. Indrišiunas and G. Raciukaitis, J. Laser Micro Nanoeng. 6, 185 (2011).10.2961/jlmn.2011.03.0002Suche in Google Scholar

[50] B. Voisiat, M. Gedvilas, S. Indrišinas and G. Račiukaitis, Phys. Procedia 12, 116 (2011).10.1016/j.phpro.2011.03.113Suche in Google Scholar

[51] J. Bekesi, J. Meinertz, J. Ihlemann and P. Simon, Appl. Phys. A Mater. Sci. Process. 93, 27 (2008).10.1007/s00339-008-4680-2Suche in Google Scholar

[52] J. H. Klein-Wiele and P. Simon, Appl. Phys. Lett. 83, 4707 (2003).10.1063/1.1631746Suche in Google Scholar

[53] J. Bekesi, P. Simon and J. Ihlemann, Appl. Phys. A Mater. Sci. Process. 114, 69 (2014).10.1007/s00339-013-8083-7Suche in Google Scholar

[54] A. Fernandez and D. W. Phillion, Appl. Opt. 37, 473 (1998).10.1364/AO.37.000473Suche in Google Scholar

[55] C. Vass, K. Osvay, T. Véso, B. Hopp and Z. Bor, Appl. Phys. A Mater. Sci. Process. 93, 69 (2008).10.1007/s00339-008-4636-6Suche in Google Scholar

[56] B. Kiss, F. Ujhelyi, Á. Sipos, B. Farkas, P. Dombi, et al., J. Laser Micro Nanoeng. 8, 271 (2013).10.2961/jlmn.2013.03.0014Suche in Google Scholar

[57] L. M. Cabalin and J. J. Laserna, Spectrochim. acta, Part B At. Spectrosc. 53, 723 (1998).10.1016/S0584-8547(98)00107-4Suche in Google Scholar

[58] A. E. Hussein, P. K. Diwakar, S. S. Harilal and A. Hassanein, J. Appl. Phys. 113, 143305 (2013).10.1063/1.4800925Suche in Google Scholar

[59] A. I. Aguilar-morales, S. Alamri, T. Kunze and A. F. Lasagni, Opt. Laser Technol. 107, 216 (2018).10.1016/j.optlastec.2018.05.044Suche in Google Scholar

[60] J. M. Liu, Opt. Lett. 7, 196 (1982).10.1364/OL.7.000196Suche in Google Scholar

[61] S. Alamri, A. I. Aguilar-Morales and A. F. Lasagni, Eur. Polym. J. 99, 27 (2018).10.1016/j.eurpolymj.2017.12.001Suche in Google Scholar

[62] S. Alamri and A. F. Lasagni, Opt. Express 25, 9603 (2017).10.1364/OE.25.009603Suche in Google Scholar

[63] S. Palanco, J. J. Laserna and J. M. Baena, Spectrochim. Acta – Part B At. Spectrosc. 57, 591 (2002).10.1016/S0584-8547(01)00388-3Suche in Google Scholar

[64] V. Veiko, Y. Karlagina, M. Moskvin, V. Mikhailovskii, G. Odintsova, et al., Opt. Lasers Eng. 96, 63 (2017).10.1016/j.optlaseng.2017.04.014Suche in Google Scholar

[65] D. P. Adams, V. C. Hodges, D. A. Hirschfeld, M. A. Rodriguez, J. P. McDonald, et al., Surf. Coatings Technol. 222, 1 (2013).10.1016/j.surfcoat.2012.12.044Suche in Google Scholar

Received: 2019-11-18
Accepted: 2020-02-27
Published Online: 2020-04-01
Published in Print: 2020-02-25

©2020 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2019-0061/pdf
Button zum nach oben scrollen