Startseite Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction

  • Thorsten Kramer EMAIL logo , Stefan Remund , Beat Jäggi , Marc Schmid und Beat Neuenschwander
Veröffentlicht/Copyright: 5. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ultra-short laser radiation is used in manifold industrial applications today. Although state-of-the-art laser sources are providing an average power of 10–100 W with repetition rates of up to several megahertz, most applications do not benefit from it. On the one hand, the processing speed is limited to some hundred millimeters per second by the dynamics of mechanical axes or galvanometric scanners. On the other hand, high repetition rates require consideration of new physical effects such as heat accumulation and shielding that might reduce the process efficiency. For ablation processes, process efficiency can be expressed by the specific removal rate, ablated volume per time, and average power. The analysis of the specific removal rate for different laser parameters, like average power, repetition rate or pulse duration, and process parameters, like scanning speed or material, can be used to find the best operation point for microprocessing applications. Analytical models and molecular dynamics simulations based on the so-called two-temperature model reveal the causes for the appearance of limiting physical effects. The findings of models and simulations can be used to take advantage and optimize processing strategies.


Communicated by: Thorsten Kramer


References

[1] New York Times: W. M. Freeman; May 6, 1964, “Theodore H. Maiman, Developer of the Laser Calls It ‘A Solution Seeking a Problem’”.Suche in Google Scholar

[2] L. E. Hargrove, R. L. Fork and M. A. Pollack, Appl. Phys. Lett. 5:1, 4–5 (1964).10.1063/1.1754025Suche in Google Scholar

[3] H. W. Mocker and R. J. Collins, Appl. Phys. Lett. 7, 270 (1965).10.1063/1.1754253Suche in Google Scholar

[4] F. X. Kärtner, E. P. Ippen and S. T. Cundiff, in: ‘Femtosecond Optical Frequency Comb: Principle, Operation, and Applications’, Ed. by J. Ye and S. T. Cundiff (Springer, Boston, MA, 2005).Suche in Google Scholar

[5] U. Keller, in: ‘Landolt-Börnstein, Group VIII/1B1, Laser Physics and Applications, Subvolume B: Laser Systems, Part 1’, Ed. by G. Herziger, H. Weber, and R. Proprawe (Springer-Verlag, Berlin, Heidelberg, New York, October 2007), pp. 33–167, ISBN 978-3-540-26033–26032.Suche in Google Scholar

[6] U. Keller, Appl. Phys. B 58, 347–363 (1994).10.1007/BF01081874Suche in Google Scholar

[7] D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).10.1016/0030-4018(85)90120-8Suche in Google Scholar

[8] Trumpf Laser GmbH, https://www.trumpf.com/de_INT/produkte/laser/kurz-und-ultrakurzpulslaser/.Suche in Google Scholar

[9] Edgwave GmbH, http://www.edge-wave.de/web/produkte/ultra-short-pulse-systeme/.Suche in Google Scholar

[10] Amphos GmbH, http://www.edge-wave.de/web/produkte/ultra-short-pulse-systeme/.Suche in Google Scholar

[11] Fraunhofer-Institut für LasertechnikILT, Aachen, https://www.ilt.fraunhofer.de/de/technologiefelder/laser-und-optik/ultrakurzpulslaser.html.Suche in Google Scholar

[12] Institut für Strahlwerkzeuge (IFSW), Stuttgart, http://www.ifsw.uni-stuttgart.de/produkte/produkte.html.Suche in Google Scholar

[13] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann, Appl. Phys. A 63, 109 (1996).10.1007/BF01567637Suche in Google Scholar

[14] C. Momma, S. Nolte, B. N. Chichkov, F. V. Alvensleben and A Tünnermann, Appl. Surf. Sci. 109–110, 15–19 (1997).10.1016/S0169-4332(96)00613-7Suche in Google Scholar

[15] C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, et al., Opt. Commun. 129, 134–142 (1996).10.1016/0030-4018(96)00250-7Suche in Google Scholar

[16] D. Breitling, A. Ruf and F. Dausinger, in: ‘Proc. SPIE 5339, Photon Processing in Microelectronics and Photonics III’ (15 July 2004).Suche in Google Scholar

[17] F. Dausinger, H. Hugel and V. I. Konov, in: ‘Proc. SPIE 5147, ALT’02 International Conference on Advanced Laser Technologies’, 14 November (2003).Suche in Google Scholar

[18] G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat and M. Gedvilas, JLMN J. Laser Micro/Nanoeng. 4, 186–191 (2009).10.2961/jlmn.2009.03.0008Suche in Google Scholar

[19] B. Neuenschwander, G. F. Bucher, C. Nussbaum, B. Joss, M. Muralt, et al., in: ‘Proc. SPIE 7584, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XV’, 75840R, 18 February (2010).Suche in Google Scholar

[20] B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange and P.-E. Martin, in: ‘Proc. SPIE 8243, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII’, 824307, 16 February (2012). doi: 10.1117/12.908583.10.1117/12.908583Suche in Google Scholar

[21] B. Lauer, B. Jäggi and B. Neuenschwander, Phys. Procedia 56, 963–972 (2014).10.1016/j.phpro.2014.08.116Suche in Google Scholar

[22] B. Jaeggi, B. Neuenschwander, S. Remund and T. Kramer, in: ‘Proc. SPIE 10091, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII’, 100910J, 20 February (2017). doi: 10.1117/12.2253696.10.1117/12.2253696Suche in Google Scholar

[23] B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, et al., JLMN J. Laser Micro/Nanoeng. 12, 258–266 (2017).Suche in Google Scholar

[24] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., J. Opt. Soc. Am. B 14, 2716–2722 (1997).10.1364/JOSAB.14.002716Suche in Google Scholar

[25] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Procedia 12(Part B), 230–238 (2011).10.1016/j.phpro.2011.03.128Suche in Google Scholar

[26] S. I. Anisimov, A. M. Bonch-Bruevich, M. A. El’yashevich, Y. A. Imas, N. A. Pavlenko, et al., Sov. Phys. Tech. Phys. 11, 945–952 (1967).Suche in Google Scholar

[27] S. I. Anisimov, B. L. Kapeliovich and T. L. Perel’man, Sov. Phys.-JETP 39, 375–377 (1974).Suche in Google Scholar

[28] B. Rethfeld, D. S. Ivanov, M. E Garcia and S. I. Anisimov, J. Phys. D: Appl. Phys. 50, 193001 (2017).10.1088/1361-6463/50/19/193001Suche in Google Scholar

[29] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).10.1103/PhysRevB.68.064114Suche in Google Scholar

[30] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, Appl. Phys. A 63, 109–115 (1996).10.1007/BF01567637Suche in Google Scholar

[31] C. Wu and L.V. Zhigilei, Appl. Phys. A 114, 11 (2014).10.1007/s00339-013-8086-4Suche in Google Scholar

[32] C. F. Richardson and P. Clancy, Mol. Sim. 7, 335 (1991).10.1080/08927029108022461Suche in Google Scholar

[33] X. Wang and X. Xu, J. Heat Transfer 124, 265 (2002).10.1115/1.1445289Suche in Google Scholar

[34] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).10.1103/PhysRevB.68.064114Suche in Google Scholar

[35] D. S. Ivanov and L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003).10.1103/PhysRevLett.91.105701Suche in Google Scholar PubMed

[36] Z. Lin and L.V. Zhigilei, Phys. Rev. B 73, 184113 (2006).10.1103/PhysRevB.73.184113Suche in Google Scholar

[37] L. V. Zhigilei, Z. Lin and D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009).10.1021/jp902294mSuche in Google Scholar

[38] Z. Lin, E. M. Bringa, E. Leveugle and L. V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010).10.1021/jp909328qSuche in Google Scholar

[39] E. T. Karim, Z. Lin and L. V. Zhigilei, AIP Conf. Proc. 1464, 280 (2012).10.1063/1.4739881Suche in Google Scholar

[40] Z. Lin, R. A. Johnson and L. V. Zhigilei, Phys. Rev. B 77, 214108 (2008).10.1103/PhysRevB.77.214108Suche in Google Scholar

[41] D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, et al., J. Appl. Phys. 107, 013519 (2010).10.1063/1.3276161Suche in Google Scholar

[42] C. Wu, D. A. Thomas, Z. Lin and L. V. Zhigilei, Appl. Phys. A 104, 781 (2011).10.1007/s00339-011-6436-7Suche in Google Scholar

[43] L. V. Zhigilei and B. J. Garrison, J. Appl. Phys. 88, 1281 (2000).10.1063/1.373816Suche in Google Scholar

[44] S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, A. M. Oparin, et al., JETP Lett. 77, 606 (2003).10.1134/1.1600815Suche in Google Scholar

[45] E. Leveugle, D. S. Ivanov and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004).10.1007/s00339-004-2682-2Suche in Google Scholar

[46] L. V. Zhigilei, D. S. Ivanov, E. Leveugle, B. Sadigh, E. M. Bringa, Proc. SPIE 5448, 505 (2004).10.1117/12.548821Suche in Google Scholar

[47] A. K. Upadhyay and H. M. Urbassek, J. Phys. D Appl. Phys. 38, 2933 (2005).10.1088/0022-3727/38/16/029Suche in Google Scholar

[48] A. K. Upadhyay, N. A. Inogamov, B. Rethfeld and H. M. Urbassek, Phys. Rev. B 78, 045437 (2008).10.1103/PhysRevB.78.045437Suche in Google Scholar

[49] B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov and I. I. Oleynik, Phys. Rev. B 82, 064113 (2010).10.1103/PhysRevB.82.064113Suche in Google Scholar

[50] S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskii, Y. N. Emirov, M. B. Agranat, et al., JETP Lett. 95, 176 (2012).10.1134/S0021364012040042Suche in Google Scholar

[51] E. Ohmura and I. Fukumoto, Int. J. Jpn. Soc. Prec. Eng. 30, 128 (1996).Suche in Google Scholar

[52] L. V. Zhigilei, P. B. S. Kodali and B. J. Garrison, J. Phys. Chem. B 101, 2028 (1997).10.1021/jp9634013Suche in Google Scholar

[53] R. F. W. Herrmann, J. Gerlach and E. E. B. Campbell, Appl. Phys. A 66, 35 (1998).10.1007/s003390050634Suche in Google Scholar

[54] X. Wu, M. Sadeghi and A. Vertes, J. Phys. Chem. B 102, 4770 (1998).10.1021/jp9806361Suche in Google Scholar

[55] C. Schäfer, H. M. Urbassek and L. V. Zhigilei, Phys. Rev. B 66, 115404 (2002).10.1103/PhysRevB.66.115404Suche in Google Scholar

[56] L. V. Zhigilei, Appl. Phys. A 76, 339 (2003).10.1007/s00339-002-1818-5Suche in Google Scholar

[57] L. V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling and M. I. Zeifman, Chem. Rev. 103, 321 (2003).10.1021/cr010459rSuche in Google Scholar PubMed

[58] P. Lorazo, L. J. Lewis and M. Meunier, Phys. Rev. Lett. 91, 225502 (2003).10.1103/PhysRevLett.91.225502Suche in Google Scholar PubMed

[59] N. N. Nedialkov, P. A. Atanasov, S. E. Imamova, A. Ruf, P. Berger, et al., Appl. Phys. A 79, 1121 (2004).10.1007/s00339-004-2659-1Suche in Google Scholar

[60] C. Cheng and X. Xu, Phys. Rev. B 72, 165415 (2005).10.1103/PhysRevB.72.165415Suche in Google Scholar

[61] P. Lorazo, L. J. Lewis and M. Meunier, Phys. Rev. B 73, 134108 (2006).10.1103/PhysRevB.73.134108Suche in Google Scholar

[62] S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov and P. A. Atanasov, J. Phys. D Appl. Phys. 40, 331–340 (2007).10.1088/0022-3727/40/2/008Suche in Google Scholar

[63] M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, et al., Appl. Surf. Sci. 253, 6276 (2007).10.1016/j.apsusc.2007.01.077Suche in Google Scholar

[64] E. Leveugle and L. V. Zhigilei, J. Appl. Phys. 102, 074914 (2007).10.1063/1.2783898Suche in Google Scholar

[65] M. Prasad, P. Conforti and B. J. Garrison, J. Appl. Phys. 101, 103113 (2007).10.1063/1.2740340Suche in Google Scholar

[66] L. Zhang and X. Wang, Appl. Surf. Sci. 255, 3097 (2008).10.1016/j.apsusc.2008.08.098Suche in Google Scholar

[67] M. Gill-Comeau and L. J. Lewis, Phys. Rev. B 84, 224110 (2011).10.1103/PhysRevB.84.224110Suche in Google Scholar

[68] L. V. Zhigilei, A. N. Volkov, E. Leveugle and M. Tabetah, Appl. Phys. A 105, 529 (2011).10.1007/s00339-011-6595-6Suche in Google Scholar

[69] S. Sonntag, C. T. Paredes, J. Roth and H.-R. Trebin, Appl. Phys. A 104, 559 (2011).10.1007/s00339-011-6460-7Suche in Google Scholar

[70] G. Norman, S. Starikov, V. Stegailov, V. Fortov, I. Skobelev, et al., J. Appl. Phys. 112, 013104 (2012).10.1063/1.4731752Suche in Google Scholar

[71] X. Li and L. Jiang, Appl. Phys. A 109, 367 (2012).10.1007/s00339-012-7269-8Suche in Google Scholar

[72] M. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, et al., MRS Bull. 41, 960–968 (2016).10.1557/mrs.2016.274Suche in Google Scholar

[73] C.-J. Lin, F. Spaepen and D. Turnbull, J. Non Cryst. Solids 61–62, 767 (1984).10.1016/S0022-3093(84)80002-2Suche in Google Scholar

[74] C. Wu, M. S. Christensen, J.-M. Savolainen, P. Balling and L. V. Zhigilei, Phys. Rev. B Condens. Matter 91, 035413 (2015).10.1103/PhysRevB.91.035413Suche in Google Scholar

[75] C. Wu and L. V. Zhigilei, J. Phys. Chem. C 120, 4438 (2016).10.1021/acs.jpcc.6b00013Suche in Google Scholar

[76] X. Sedao, M. V. Shugaev, C. Wu, T. Douillard, C. Esnouf, et al., ACS Nano 10, 6995 (2016).10.1021/acsnano.6b02970Suche in Google Scholar

[77] J. A. Alonso and J. M. Lopez, Mater. Lett. 4, 316 (1986).10.1016/0167-577X(86)90033-9Suche in Google Scholar

[78] J. Finger and M. Reininghaus, Opt. Express 22, 18790–18799 (2014).10.1364/OE.22.018790Suche in Google Scholar PubMed

[79] R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, et al., Opt. Express 22, 11312–11324 (2014).10.1364/OE.22.011312Suche in Google Scholar PubMed

[80] R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, et al., Opt. Express 25, 3966–3979 (2017).10.1364/OE.25.003966Suche in Google Scholar PubMed

[81] F. Bauer, A. Michalowski, T. Kiedrowski and S. Nolte, Opt. Express 23, 1035–1043 (2015).10.1364/OE.23.001035Suche in Google Scholar PubMed

[82] J. König, S. Nolte and A. Tünnermann, Opt. Express 13, 10597–10607 (2005).10.1364/OPEX.13.010597Suche in Google Scholar PubMed

[83] H. Schlueter, B. Jaeggi, B. Neuenschwander and M. Zimmermann, Laser Focus World 52, 41–44 (2016).Suche in Google Scholar

[84] S. Russ, R. Gebs, L. Bauer, U. Keller, T. Meyer et al., Paper 161, Lasers in Manufacturing 2015 (2015).Suche in Google Scholar

[85] J. Lopez, R. Kling, R. Torres, A. Lidolff, M. Delaigue, et al., Proc. SPIE 8243, (2012).10.1117/12.907792Suche in Google Scholar

[86] F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, et al., Phys. Procedia 41, 698–707 (2013).10.1016/j.phpro.2013.03.136Suche in Google Scholar

[87] J. Lopez, A. Lidolff, M. Delaigue, C. Hönninger, S. Ricaud, et al., Paper M401, ICALEO 2011, (2011).Suche in Google Scholar

[88] R. Le Harzig, D. Breitling, M. Weikert, S. Sommer, C. Föhl, et al., Appl. Surf. Sci. 249, 322–331 (2005).10.1016/j.apsusc.2004.12.027Suche in Google Scholar

[89] B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, et al., Appl. Phys. A 69, 381–383 (1999).10.1007/s003390051018Suche in Google Scholar

[90] Pulsar Photonics GmbH, https://www.pulsar-photonics.de/systemtechnik/.Suche in Google Scholar

[91] Hamamatsu Photonics K.K., http://www.hamamatsu.com/jp/en/4015.html.Suche in Google Scholar

[92] Holoeye Photonics AG, https://holoeye.com/spatial-light-modulators/.Suche in Google Scholar

[93] C. Hartmann, T. Fehr, M. Brajdic and A. Gillner, JLMN J. Laser Micro Nanoeng. 2, 44–48 (2007).10.2961/jlmn.2007.01.0009Suche in Google Scholar

[94] C. Hartmann and A. Gillner, in: ‘ICALEO Congress Proceedings - Laser Microprocessing Conference’, Orlando (2007), 38–44.Suche in Google Scholar

[95] R. Knappe, H. Haloui, A. Seifert, A. Weis and A. Nebel, in: ‘Proc. SPIE 7585, Laser-based Micro- and Nanopackaging and Assembly IV’, 75850H, 23 February (2010). doi.org/10.1117/12.842318.Suche in Google Scholar

[96] C. Emmelmann and J. P. Calderón Urbina, Phys. Procedia 12(B), 172–181 (2011).10.1016/j.phpro.2011.03.119Suche in Google Scholar

[97] T. Kramer, Y. Zhang, S. Remund, B. Jaeggi, A. Michalowski, et al., JLMN J. Laser Micro Nanoeng. 12, 267–273 (2017).Suche in Google Scholar

[98] T. Kramer, B. Neuenschwander, B. Jäggi, S. Remund, et al., Phys. Procedia 83, 123–134 (2016).10.1016/j.phpro.2016.08.024Suche in Google Scholar

[99] M. Sailer, F. Bauer, J. Kleiner and M. Kaiser, in: ‘Lasers in Manufacturing Conference (2015)’.Suche in Google Scholar

[100] B. Jaeggi, S. Remund, Y. Zhang, T. Kramer and B. Neuenschwander, JLMN J. Laser Micro Nanoeng. 12, 107–114 (2017).10.2961/jlmn.2017.02.0011Suche in Google Scholar

Received: 2018-01-26
Accepted: 2018-03-19
Published Online: 2018-05-05
Published in Print: 2018-05-24

©2018 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2018-0010/pdf?lang=de
Button zum nach oben scrollen