Heat input and accumulation for ultrashort pulse processing with high average power
-
Johannes Finger
, Benedikt Bornschlegel
Abstract
Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.
Acknowledgments
Parts of this work have been funded by the German Research Foundation DFG under grant no. PO 591/41-1.
References
[1] B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben and A. Tünnermann, Appl. Phys. A, 63, 109–115 (1996).10.1007/BF01567637Suche in Google Scholar
[2] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, et al., J. Opt. Soc. Am. B 14, 2716–2722 (1997).10.1364/JOSAB.14.002716Suche in Google Scholar
[3] S.-S Wellershoff, J. Hohlfeld, J. Güdde and E. Matthias, Appl. Phys. A 69, S99–S107 (1999).10.1007/s003399900305Suche in Google Scholar
[4] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Proc. 12, 230–238 (2011).10.1016/j.phpro.2011.03.128Suche in Google Scholar
[5] B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, et al., Phys. Proc. 12, 164–171 (2011).10.1016/j.phpro.2011.03.118Suche in Google Scholar
[6] S. L. Campanelli, A. D. Ludovico, C. Bonserio, P. Cavalluzzi and M. Cinquepalmi, J. Mater. Process. Technol. 191, 220–223 (2007).10.1016/j.jmatprotec.2007.03.005Suche in Google Scholar
[7] M. Henry, P. M. Harrison, I. Henderson and M. F. Brownell, Proc. SPIE 5662 (2004). Doi: 10.1117/12.596743.10.1117/12.596743Suche in Google Scholar
[8] T. Eidam, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, et al., Opt. Lett. 35, 94 (2010).10.1364/OL.35.000094Suche in Google Scholar PubMed
[9] P. Russbüldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, et al., Opt. Lett. 17, 12230–12245 (2009).10.1364/OE.17.012230Suche in Google Scholar
[10] P. Russbüldt, T. Mans, J. Weitenberg, H. D. Hoffmann and R. Poprawe, Opt. Lett. 35, 4169–4171 (2010).10.1364/OL.35.004169Suche in Google Scholar PubMed
[11] J.-P. Negel, A. Voss, M. A. Ahmed, D. Bauer, D. Sutter, et al., Opt. Lett. 38, 5442 (2013).10.1364/OL.38.005442Suche in Google Scholar PubMed
[12] P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, et al., IEEE J. Select. Top. Quant. Electron. 21, 447–463 (2015).10.1109/JSTQE.2014.2333234Suche in Google Scholar
[13] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, et al., Opt. Express 10, 628 (2002).10.1364/OE.10.000628Suche in Google Scholar PubMed
[14] G. Raciukaitis, M. Brikas and M. Gedvilas, in ‘Proceedings of ICALEO 2008’ (2008), p. M403.Suche in Google Scholar
[15] B. Neuenschwander, B. Jaeggi, V. Romano and S. M. Pimenov, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XVII’ (2012).Suche in Google Scholar
[16] O. Haupt, V. Schütz and U. Stute, in ‘Laser-based Micro- and Nanopackaging and Assembly V’ (2011).Suche in Google Scholar
[17] L. Büsing, S. Eifel and P. Loosen, in ‘SPIE Photonics Europe 2014, Proceedings Volume 9131, Optical Modelling and Design III’, vol. 9131 (Brussels, Belgium, 2014), pp. 91310C-91310C-12.Suche in Google Scholar
[18] J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun and S. Kawata, Appl. Phys. Lett. 86, 044102 (2005).10.1063/1.1855404Suche in Google Scholar
[19] Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, et al., Appl. Surf. Sci. 255, 6582–6588 (2009).10.1016/j.apsusc.2009.02.043Suche in Google Scholar
[20] Z. Kuang, W. Perrie, D. Liu, S. Edwardson, J. Cheng, et al., Appl. Surf. Sci. 255, 9040–9044 (2009).10.1016/j.apsusc.2009.06.089Suche in Google Scholar
[21] R. De Loor, Phys. Proc. 41, 544–551 (2013).10.1016/j.phpro.2013.03.114Suche in Google Scholar
[22] J. Schille, L. Schneider and U. Loeschner, Appl. Phys. A 120, 847–855 (2015).10.1007/s00339-015-9352-4Suche in Google Scholar
[23] B. Jaeggi, V. Romano and S. M. Pimenov, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX’ (2014).Suche in Google Scholar
[24] U. Loeschner, J. Schille, A. Streek, T. Knebel and L. Hartwig, J. Laser Appl. 27, S29303 (2015).10.2351/1.4906473Suche in Google Scholar
[25] G. Hennig, S. Bruening and B. Neuenschwander, in ‘CLEO:2011 – Laser Applications to Photonic Applications’ (2011).Suche in Google Scholar
[26] G. Hennig, K.-H. Selbmann and A. Brockelt, in ‘Workshop on Laser Applications in Europe’ (2005).Suche in Google Scholar
[27] S. Bruening, G. Hennig, S. Eifel and A. Gillner, Phys. Proc. 12, 105–115 (2011).10.1016/j.phpro.2011.03.112Suche in Google Scholar
[28] R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, et al., Opt. Express 22, 11312 (2014).10.1364/OE.22.011312Suche in Google Scholar PubMed
[29] A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, et al., Opt. Express 16, 8958 (2008).10.1364/OE.16.008958Suche in Google Scholar PubMed
[30] A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, et al., Opt. Lett. 34, 3304 (2009).10.1364/OL.34.003304Suche in Google Scholar PubMed
[31] J. Finger and M. Reininghaus, Opt. Express 22, 18790–18799 (2014).10.1364/OE.22.018790Suche in Google Scholar PubMed
[32] F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, et al., Opt. Express 22, 12200 (2014).10.1364/OE.22.012200Suche in Google Scholar PubMed
[33] H. S. Carslaw and J. C. Jaeger, ‘Conduction of Heat in Solids’ (Clarendon Pr., Oxford, 1959).Suche in Google Scholar
[34] F. Bauer, J. Laser Micro/Nanoeng. 10, 325–328, 2015.10.2961/jlmn.2015.03.0016Suche in Google Scholar
[35] A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, et al., Appl. Phys. A 82, 357362 (2005).10.1007/s00339-005-3412-0Suche in Google Scholar
[36] A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 86, 011916 (2005).10.1063/1.1844598Suche in Google Scholar
[37] F. Bauer, A. Michalowski, T. Kiedrowski and S. Nolte, Opt. Express 23, 1035 (2015).10.1364/OE.23.001035Suche in Google Scholar PubMed
[38] J. König, S. Nolte and A. Tünnermann, Opt. Express 13, 10597 (2005).10.1364/OPEX.13.010597Suche in Google Scholar PubMed
[39] J. Finger, C. Kalupka and M. Reininghaus, J. Mater. Process. Technol. 226, 221227 (2015).10.1016/j.jmatprotec.2015.07.014Suche in Google Scholar
[40] B. Neuenschwander, Th. Kramer, B. Lauer and B. Jaeggi, in ‘Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX’ (2015).Suche in Google Scholar
[41] D. Herzog, M. Schmidt-Lehr, M. Canisius, M. Oberlander, J.-P. Tasche, et al., J. Laser Appl. 27, S28001 (2015).10.2351/1.4906304Suche in Google Scholar
[42] T. V. Kononenko, C. Freitag, M. S. Komlenok, V. Onuseit, R. Weber, et al., J. Appl. Phys. 118, 103105 (2015).10.1063/1.4930059Suche in Google Scholar
[43] C. Freitag, M. Wiedenmann, J.-P. Negel, A. Loescher, V. Onuseit, et al., Appl. Phys. A 119, 1237–1243 (2015).10.1007/s00339-015-9159-3Suche in Google Scholar
[44] R. Weber, T. Graf, C. Freitag, A. Feuer, T. Kononenko, et al., Opt. Express 25, 3966–3979 (2017).10.1364/OE.25.003966Suche in Google Scholar PubMed
[45] M. Nießen, L. Bürgermeister and N. Hambach, Laser Technik J. 14, 42–44 (2017).10.1002/latj.201700013Suche in Google Scholar
©2018 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Disruptive: making lenses in a foundry
- Community
- News
- Topical Issue: Ultrafast Laser Matter Interaction
- Editorial
- The ultrafast laser is gearing up to become a tool for high-precision mass production – opportunities and challenges
- Review Articles
- Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction
- Heat input and accumulation for ultrashort pulse processing with high average power
- Residual heat generated during laser processing of CFRP with picosecond laser pulses
- Ultrafast Bessel beams: advanced tools for laser materials processing
- Research Articles
- Residual heat during laser ablation of metals with bursts of ultra-short pulses
- Model of the final borehole geometry for helical laser drilling
- Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Disruptive: making lenses in a foundry
- Community
- News
- Topical Issue: Ultrafast Laser Matter Interaction
- Editorial
- The ultrafast laser is gearing up to become a tool for high-precision mass production – opportunities and challenges
- Review Articles
- Ablation dynamics – from absorption to heat accumulation/ultra-fast laser matter interaction
- Heat input and accumulation for ultrashort pulse processing with high average power
- Residual heat generated during laser processing of CFRP with picosecond laser pulses
- Ultrafast Bessel beams: advanced tools for laser materials processing
- Research Articles
- Residual heat during laser ablation of metals with bursts of ultra-short pulses
- Model of the final borehole geometry for helical laser drilling
- Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law