Startseite Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Atomistic simulations of ultra-short pulse laser ablation of aluminum: validity of the Lambert-Beer law

  • Eugen Eisfeld EMAIL logo und Johannes Roth
Veröffentlicht/Copyright: 1. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Based on hybrid molecular dynamics/two-temperature simulations, we study the validity of the application of Lambert-Beer’s law, which is conveniently used in various modeling approaches of ultra-short pulse laser ablation of metals. The method is compared to a more rigorous treatment, which involves solving the Helmholtz wave equation for different pulse durations ranging from 100 fs to 5 ps and a wavelength of 800 nm. Our simulations show a growing agreement with increasing pulse durations, and we provide appropriate optical parameters for all investigated pulse durations.

  1. Funding: Deutsche Forschungsgemeinschaft, Funder Id: 10.13039/501100001659, Grant Number: SFB 716, subproject B5.

References

[1] B. Lin and H. E. Elsayed-Ali, Surf. Sci. 498, 275–284 (2002).10.1016/S0039-6028(01)01764-2Suche in Google Scholar

[2] K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, et al., Nature 422, 287–289 (2003).10.1038/nature01490Suche in Google Scholar PubMed

[3] Z. Lin, L.V. Zhigilei and V. Celli, Appl. Phys. A 77, 776 (2008).10.1103/PhysRevB.77.075133Suche in Google Scholar

[4] J. P. Colombier, P. Combis, E. Audouard and R. Stoian, New J. Phys. 14, 13039 (2012).10.1088/1367-2630/14/1/013039Suche in Google Scholar

[5] J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, et al., Appl. Surf. Sci. 74, 311 (2006).10.1103/PhysRevB.74.224106Suche in Google Scholar

[6] N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel and E. E. B. Campbell, Phys. Rev. B 69, 97 (2004).10.1103/PhysRevB.69.054102Suche in Google Scholar

[7] M. Kaganov, I. Lifshitz and L. Tanatarov, J. Exp. Theor. Phys. 4, 173–178 (1957).Suche in Google Scholar

[8] N. E. Andreev, V. V. Kostin and M. E. Veisman, Phys. Scr. 58, 486 (1998).10.1088/0031-8949/58/5/010Suche in Google Scholar

[9] M. E. Povarnitsyn, V. B. Fokin, P. R. Levashov and T. E. Itina, Phys. Rev. B 92, 232 (2015).10.1103/PhysRevB.92.174104Suche in Google Scholar

[10] M. E. Povarnitsyn and N. E. Andreev, J. Phys.: Conf. Ser. 774, 12105 (2016).10.1088/1742-6596/774/1/012105Suche in Google Scholar

[11] L. V. Zhigilei, D. S. Ivanov, E. Leveugle, B. Sadigh and E. M. Bringa, in: ‘Computer Modeling of Laser Melting and Spallation of Metal Targets’, (SPIE, Taos, NM, 2004) p. 505.10.1117/12.548821Suche in Google Scholar

[12] S. Scharring, D. J. Förster, H.-A. Eckel, J. Roth and M. Povarnitsyn, in: HPLA/BEP 2014.Suche in Google Scholar

[13] W. E. Nagel, D. B. Kröner, M. M. Resch, J. Roth, C. Trichet, et al., Eds., in: ‘Laser Ablation of Metals: High Performance Computing in Science and Engineering 10’, (Springer, Berlin Heidelberg, 2011).Suche in Google Scholar

[14] J. Roth, A. Krauß, J. Lotze and H.-R. Trebin, Appl. Phys. A 117, 2207–2216 (2014).10.1007/s00339-014-8647-1Suche in Google Scholar

[15] D. S. Ivanov and L. V. Zhigilei, Phys. Rev. B 68, 433 (2003).10.1103/PhysRevB.68.064114Suche in Google Scholar

[16] V. V. Zhakhovskii, N. A. Inogamov, Y. V. Petrov, S. I. Ashitkov and K. Nishihara, Appl. Surf. Sci. 255, 9592–9596 (2009).10.1016/j.apsusc.2009.04.082Suche in Google Scholar

[17] G. Strang, SIAM J. Numer. Anal. 5, 506–517 (1968).10.1137/0705041Suche in Google Scholar

[18] H. Holden, K. Karlsen, K.-A. Lie and N. H. Risebro, in ‘Splitting Methods for Partial Differential Equations with Rough Solutions’, (European Mathematical Society Publishing House, Zuerich, Switzerland, 2010).10.4171/078Suche in Google Scholar

[19] D. J. McCloskey, An Analytic Formulation of Equations of State, available at https://www.rand.org/pubs/research_memoranda/RM3905.html.Suche in Google Scholar

[20] M. E. Povarnitsyn, N. E. Andreev, P. R. Levashov, K. V. Khishchenko and O. N. Rosmej, Phys. Plasmas 19, 23110 (2012).10.1063/1.3683687Suche in Google Scholar

[21] N. E. Andreev, M. E. Veisman, V. P. Efremov and V. E. Fortov, High Temp. 41, 594–608 (2003).10.1023/A:1026184309635Suche in Google Scholar

[22] M. B. Agranat, N. E. Andreev, S. I. Ashitkov, M. E. Veĭsman, P. R. Levashov, JETP Lett. 85, 271–276 (2007).10.1134/S0021364007060021Suche in Google Scholar

[23] M. Born and E. Wolf, in ‘Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light’, 7th ed., (Cambridge University Press, Cambridge, New York, 1999).10.1017/CBO9781139644181Suche in Google Scholar

[24] M. Fang, S. Tang, Z. Li and X. Wang, Comput. Mech. 50, 645–655 (2012).10.1007/s00466-012-0696-8Suche in Google Scholar

[25] A. Stukowski, J. Met. 66, 399–407 (2014).10.1007/s11837-013-0827-5Suche in Google Scholar

[26] C. Wu and L. V. Zhigilei, Appl. Phys. A 114 11–32 (2014).10.1007/s00339-013-8086-4Suche in Google Scholar

Received: 2018-01-15
Accepted: 2018-03-19
Published Online: 2018-05-01
Published in Print: 2018-05-24

©2018 THOSS Media & De Gruyter, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2018-0005/pdf
Button zum nach oben scrollen