Abstract
Chip makers are actively working on the adoption of 0.33 numerical aperture (NA) EUV scanners for the 7-nm and 5-nm nodes (B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 977602 (2016) doi: 10.1117/12.2225014; A. Lio, in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97760V (2016) doi: 10.1117/12.2225017). In the meantime, leading foundries and integrated device manufacturers are starting to investigate patterning options beyond the 5-nm node (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022). To minimize the cost and process complexity of multiple patterning beyond the 5-nm node, EUV high-NA single-exposure patterning is a preferred method over EUV double patterning (O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022; J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150). The EUV high-NA scanner equipped with a projection lens of 0.55 NA is designed to support resolutions below 10 nm. The high-NA system is beneficial for enhancing resolution, minimizing mask proximity correction bias, improving normalized image log slope (NILS), and controlling CD uniformity (CDU). However, increasing NA from 0.33 to 0.55 reduces the depth of focus (DOF) significantly. Therefore, the source mask optimization (SMO) with sub-resolution assist features (SRAFs) are needed to increase DOF to meet the demanding full chip process control requirements (S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV ‘Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI’, (2015) doi: 10.1117/12.2086074). To ensure no assist feature printing, the assist feature sizes need to be scaled with λ/NA. The extremely small SRAF width (below 25 nm on the reticle) is difficult to fabricate across the full reticle. In this paper, we introduce an innovative ‘attenuated SRAF’ to improve SRAF manufacturability and still maintain the process window benefit. A new mask fabrication process is proposed to use existing mask-making capability to manufacture the attenuated SRAFs. The high-NA EUV system utilizes anamorphic reduction; 4× in the horizontal (slit) direction and 8× in the vertical (scanning) direction (J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150; B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94221G (2015) doi: 10.1117/12.2175488). For an anamorphic system, the magnification has an angular dependency, and thus, familiar mask specifications such as mask error factor (MEF) need to be redefined. Similarly, mask-manufacturing rule check (MRC) needs to consider feature orientation.
Acknowledgments
The authors graciously thank Kurt Wampler, Jan van Schoot, Steve Hansen, Jim Wiley, Jianjun Jia, and Xiaoyang Li for their assistance, discerning critique, and discussion of this work.
References
[1] B. Turko, S. L. Carson, A. Lio, T. Liang, M. Phillips, et al., in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 977602 (2016) doi: 10.1117/12.2225014.10.1117/12.2225014Suche in Google Scholar
[2] A. Lio, in ‘Proc. SPIE9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97760V (2016) doi: 10.1117/12.2225017.10.1117/12.2225017Suche in Google Scholar
[3] O. Wood, S. Raghunathan, P. Mangat, V. Philipsen, V. Luong, et al., in ‘Proc. SPIE. 9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220I (2015) doi: 10.1117/12.2085022.10.1117/12.2085022Suche in Google Scholar
[4] S. Raghunathan, G. McIntyre, G. Fenger, O. Wood, in ‘Proc. SPIE8679, Extreme Ultraviolet (EUV) Lithography IV’, vol. 867918 (2013) doi: 10.1117/12.2011643.10.1117/12.2011643Suche in Google Scholar
[5] S. Hsu, R. Howell, J. Jia, H.-Y. Liu, K. Gronlund, et al., EUV ‘Proc. SPIE9048, Extreme Ultraviolet (EUV) Lithography VI’, (2015) doi: 10.1117/12.2086074.10.1117/12.2086074Suche in Google Scholar
[6] B. Kneer, S. Migura, W. Kaiser, J. T. Neumann, J. van Schoot, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94221G (2015) doi: 10.1117/12.2175488.10.1117/12.2175488Suche in Google Scholar
[7] J. van Schoot, K. van Ingen Schenau, G. Bottiglieri, K. Troost, J. Zimmerman, et al., ‘Proc. SPIE. 9776, Extreme Ultraviolet (EUV) Lithography VII’, vol. 97761I (2016) doi: 10.1117/12.2220150.10.1117/12.2220150Suche in Google Scholar
[8] M. Burkhardt, A. Raghunathan, in ‘Proc. SPIE9422, Extreme Ultraviolet (EUV) Lithography VI’, vol. 94220X (2015) doi: 10.1117/12.2085948.10.1117/12.2085948Suche in Google Scholar
[9] J. Fung Chen, T. Laidig, K. E. Wampler, R. Caldwell, J. Vac. Sci. Technol. B 15, 2426–2433 (1997).10.1116/1.589660Suche in Google Scholar
[10] H. Kang, in ‘Proc. SPIE 7520, Lithography Asia 2009’, vol. 752037 (2009) doi: 10.1117/12.849556.10.1117/12.849556Suche in Google Scholar
[11] A. Erdman, P. Evanschitzky, J. T. Neumann, P. Gräupner, in ‘Proc. SPIE 9426, Optical Microlithography XXVIII’, vol. 94260H (2015) doi: 10.1117/12.2086346.10.1117/12.2086346Suche in Google Scholar
[12] J. Finders, L. Winter, T. Last, J. Micro/Nanolith. MEMS MOEMS 15, 021408 (2016). doi: 10.1117/1.JMM.15.2.021408.10.1117/1.JMM.15.2.021408Suche in Google Scholar
[13] M. Burkhardt, G. McIntyre, R. Schlief, L. Sun, in ‘Proc. SPIE 9048, Extreme Ultraviolet (EUV) Lithography V’, vol. 904838 (2014) doi: 10.1117/12.2048311.10.1117/12.2048311Suche in Google Scholar
[14] D. Hsu, J. Liu, U.S. Application No. 62/322677 ‘Mapping of patterns between design layout and patterning device’ April 14, 2016.Suche in Google Scholar
©2017 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Patterning roadmap: 2017 prospects
- Community
- Conference Notes
- News from the European Optical Society (EOS)
- Topical issue: Optical Nanostructuring
- Editorial
- Next-generation lithography – an outlook on EUV projection and nanoimprint
- Tutorial
- Photoresists in extreme ultraviolet lithography (EUVL)
- Review Articles
- Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling
- Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography
- EUV mask defectivity – a process of increasing control toward HVM
- Development and performance of EUV pellicles
- A review of nanoimprint lithography for high-volume semiconductor device manufacturing
- Large area nanoimprint by substrate conformal imprint lithography (SCIL)
- Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns
- Research Articles
- A full-process chain assessment for nanoimprint technology on 200-mm industrial platform
- Challenges of anamorphic high-NA lithography and mask making
- Research Article
- Chip bonding of low-melting eutectic alloys by transmitted laser radiation
Artikel in diesem Heft
- Cover and Frontmatter
- Views
- Patterning roadmap: 2017 prospects
- Community
- Conference Notes
- News from the European Optical Society (EOS)
- Topical issue: Optical Nanostructuring
- Editorial
- Next-generation lithography – an outlook on EUV projection and nanoimprint
- Tutorial
- Photoresists in extreme ultraviolet lithography (EUVL)
- Review Articles
- Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling
- Characterization and mitigation of 3D mask effects in extreme ultraviolet lithography
- EUV mask defectivity – a process of increasing control toward HVM
- Development and performance of EUV pellicles
- A review of nanoimprint lithography for high-volume semiconductor device manufacturing
- Large area nanoimprint by substrate conformal imprint lithography (SCIL)
- Laser interference patterning methods: Possibilities for high-throughput fabrication of periodic surface patterns
- Research Articles
- A full-process chain assessment for nanoimprint technology on 200-mm industrial platform
- Challenges of anamorphic high-NA lithography and mask making
- Research Article
- Chip bonding of low-melting eutectic alloys by transmitted laser radiation