Startseite Infrared detectors for space applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Infrared detectors for space applications

  • Wolfgang Fick EMAIL logo , Kai Uwe Gassmann , Luis-Dieter Haas , Markus Haiml , Stefan Hanna , Dominique Hübner , Holger Höhnemann , Hans-Peter Nothaft und Richard Thöt
Veröffentlicht/Copyright: 26. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM’s currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.


Corresponding author: Wolfgang Fick, AIM INFRAROT-MODULE GmbH, Theresienstr. 2, D-74072 Heilbronn, Germany, e-mail:

EnMap is built under contract of the German Space Administration DLR with funds of the German Federal Ministry of Economic Affairs and Technology (50 EP 0801). The work on the MTG phase A predevelopment activities has been supported by the European Space Agency (ESA) under contract ESTEC 20833/07/NL/FF. The support is gratefully acknowledged.

References

[1] S. Zehner, M. Mai, A. Withopf and I. Rühlich, Proc. ICC 17 (Los Angeles), p. 85–92, (2012).Suche in Google Scholar

[2] S. Hofer, H. J. Kaufmann, T. Stuffler, B. Penné, G. Schreier, et al., Proc. SPIE. 6366, (2006).Suche in Google Scholar

[3] T. Stuffler, C. Kaufmann, S. Hofer, K. P. Förster, G. Schreier, et al., Acta Astronaut. 61, 115–120 (2007).10.1016/j.actaastro.2007.01.033Suche in Google Scholar

[4] H. Korf, I. Rühlich, M. Mai and G. Thummes, Proc. SPIE 5783, 164–168 (2005).Suche in Google Scholar

[5] M. Riese, F. Friedl-Vallon, R. Spang, P. Preusse, C. Schiller, et al., JASR 36, 989–995 (2005).Suche in Google Scholar

[6] F. Friedl-Vallon, M. Riese, G. Maucher, A. Lengel, F. Hase, et al., JASR 37, 2287–2291 (2006).Suche in Google Scholar

[7] P. Preusse, S. Schroeder, L. Hoffmann, M. Ern, F. Friedl-Vallon, et al., Atmos. Meas. Tech. 2, 299–311 (2009).10.5194/amt-2-299-2009Suche in Google Scholar

[8] J. Ungermann, M. Kaufmann, L. Hoffmann, P. Preusse, H. Oelhaf, et al., Atmos. Meas. Tech. 3, 1647–1665 (2010).10.5194/amt-3-1647-2010Suche in Google Scholar

[9] F. Friedl-Vallon and GLORIA-Team, AIP Conference Proceedings 1531, 308–311 (2013).Suche in Google Scholar

[10] R. Wollrab, A. Bauer, H. Bitterlich, M. Bruder, S. Hanna, et al., J. Electron. Mater. 40, 1618–1623 (2011).Suche in Google Scholar

[11] S. Hanna, A. Bauer, H. Bitterlich, M. Bruder, M., M. Haiml, et al., Proc. SPIE 7474, 747415 (2009).Suche in Google Scholar

[12] S. Hanna, A. Bauer, H. Bitterlich, M. Bruder, L.-D. Haas, et al., Proc. SPIE 7826, 78261H (2010).Suche in Google Scholar

[13] A. Weber, W. Belzner, L.-D. Haas, S. Hanna, K. Hofmann, et al. in ‘Conference on Radiation Effects on Components and Systems’ (RADECS), Sevilla (2011).Suche in Google Scholar

Received: 2013-8-14
Accepted: 2013-9-27
Published Online: 2013-10-26
Published in Print: 2013-12-01

©2013 by THOSS Media & De Gruyter Berlin Boston

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/aot-2013-0046/html?lang=de
Button zum nach oben scrollen