Abstract
The introduction of two-parameter
Funding statement: The third author Talha Usman would like to thank Scientific Research Department at University of Technology and Applied Sciences, Sur for supporting this work under Project No. UTAS-Sur-SRD-IRF 23-04/06.
References
[1] A. Belafhal, H. Benzehoua, A. Balhamri and T. Usman, An advanced method for evaluating Lommel integral and its application in marine environment, J. Comput. Appl. Math. 416 (2022), Paper No. 114600. 10.1016/j.cam.2022.114600Suche in Google Scholar
[2] A. Belafhal, H. Benzehoua and T. Usman, Certain integral transforms and their application to generate new Laser waves: Exton–Gaussian beams, Adv. Math. Models Appl. 6 (2021), no. 3, 206–217. Suche in Google Scholar
[3] A. Belafhal, S. Chib, F. Khannous and T. Usman, Evaluation of integral transforms using special functions with applications to biological tissues, Comput. Appl. Math. 40 (2021), no. 4, Paper No. 156. 10.1007/s40314-021-01542-2Suche in Google Scholar
[4] A. Belafhal, E. M. El Halba and T. Usman, An integral transform involving the product of Bessel functions and Whittaker function and its application, Int. J. Appl. Comput. Math. 6 (2020), no. 6, Paper No. 177. 10.1007/s40819-020-00930-2Suche in Google Scholar
[5] A. Belafhal, E. M. El Halba and T. Usman, A note on some representations of Appell and Horn functions, Adv. Stud. Contemp. Math. (Kyungshang) 30 (2020), 5–16. Suche in Google Scholar
[6] A. Belafhal, E. M. El Halba and T. Usman, Certain integral transforms and their applications in propagation of Laguerre–Gaussian Schell-model beams, Commun. Math. 29 (2021), no. 3, 483–491. 10.2478/cm-2021-0030Suche in Google Scholar
[7] A. Belafhal, E. M. El Halba and T. Usman, An integral transform and its application in the propagation of Lorentz–Gaussian beams, Contemp. Math. to appear. Suche in Google Scholar
[8] A. Belafhal and S. Hennani, A note on some integrals used in laser field involving the product of Bessel functions, Phys. Chem. News 61 (2011), 59–62. Suche in Google Scholar
[9] A. Belafhal, N. Nossir, L. Dalil-Essakali and T. Usman, Integral transforms involving the product of Humbert and Bessel functions and its application, AIMS Math. 5 (2020), no. 2, 1260–1274. 10.3934/math.2020086Suche in Google Scholar
[10] N. P. Cakić and G. V. Milovanović, On generalized Stirling numbers and polynomials, Math. Balkanica (N. S.) 18 (2004), no. 3–4, 241–248. Suche in Google Scholar
[11]
R. Chakrabarti and R. Jagannathan,
A
[12] L. Comtet, Advanced Combinatorics. The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht, 1974. 10.1007/978-94-010-2196-8Suche in Google Scholar
[13]
R. B. Corcino,
On
[14]
A. de Médicis and P. Leroux,
Generalized Stirling numbers, convolution formulae and
[15]
U. Duran, M. Acikgoz and S. Araci,
On
[16]
U. Duran and M. Acikgoz,
Apostol type
[17]
U. Duran, M. Acikgoz and S. Araci,
On some polynomials derived from
[18]
U. Duran, M. Acikgoz and S. Araci,
A study on some new results arising from
[19] H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Henry W. Gould, Morgantown, 1972. 10.1080/00150517.1972.12430893Suche in Google Scholar
[20] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2002. 10.1007/978-1-4613-0071-7Suche in Google Scholar
[21] N. Khan and S. Husain, Analysis of Bell based Euler polynomials and their application, Int. J. Appl. Comput. Math. 7 (2021), no. 5, Paper No. 195. 10.1007/s40819-021-01127-xSuche in Google Scholar
[22] N. Khan and S. Husain, A family of Apostol–Euler polynomials associated with Bell polynomials, Analysis (Berlin) 43 (2023), 10.1515/anly-2022-1101. 10.1515/anly-2022-1101Suche in Google Scholar
[23] N. Khan, S. Husain, T. Usman and S. Araci, A new family of Apostol–Genocchi polynomials associated with their certain identities, Appl. Math. Sci. Eng. 31 (2023), no. 1, 1–19. 10.1080/27690911.2022.2155641Suche in Google Scholar
[24]
W. A. Khan, G. Muhiuddin, U. Duran and D. Al-Kadi,
On
[25] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput. 217 (2011), no. 12, 5702–5728. 10.1016/j.amc.2010.12.048Suche in Google Scholar
[26] M. Masjed-Jamei and W. Koepf, Symbolic computation of some power-trigonometric series, J. Symbolic Comput. 80 (2017), 273–284. 10.1016/j.jsc.2016.03.004Suche in Google Scholar
[27] M. Masjed-Jamei, G. V. Milovanović and M. C. Dağlı, A generalization of the array type polynomials, Math. Morav. 26 (2022), no. 1, 37–46. 10.5937/MatMor2201037MSuche in Google Scholar
[28] M. Masjed-Jamei and Z. Moalemi, Sine and cosine types of generating functions, Appl. Anal. Discrete Math. 15 (2021), no. 1, 82–105. 10.2298/AADM200530002MSuche in Google Scholar
[29]
P. Njionou Sadjang,
On two
[30]
P. Njionou Sadjang,
On the fundamental theorem of
[31]
P. Njionou Sadjang,
On
[32]
P. Njionou Sadjang and U. Duran,
On two bivariate kinds of
[33] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley and Sons, New York, 1958. Suche in Google Scholar
[34] Y. Simsek, Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl. 2013 (2013), Paper No. 87. 10.1186/1687-1812-2013-87Suche in Google Scholar
[35]
Y. F. Smirnov and R. F. Wehrhahn,
The Clebsch–Gordan coefficients for the two-parameter quantum algebra
[36] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, 2012. 10.1016/B978-0-12-385218-2.00002-5Suche in Google Scholar
[37]
T. Usman, M. Saif and J. Choi,
Certain identities associated with
[38] http://en.wikipedia.org/wiki/Bell_polynomials. Suche in Google Scholar
[39] https://en.wikipedia.org/wiki/Fa\`{a}_di_Bruno's_formula. Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A family of Apostol–Euler polynomials associated with Bell polynomials
- Some finite integrals involving Mittag-Leffler confluent hypergeometric function
- Results concerning multi-index Wright generalized Bessel function
- On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus
- The (p,q)-sine and (p,q)-cosine polynomials and their associated (p,q)-polynomials
Artikel in diesem Heft
- Frontmatter
- A family of Apostol–Euler polynomials associated with Bell polynomials
- Some finite integrals involving Mittag-Leffler confluent hypergeometric function
- Results concerning multi-index Wright generalized Bessel function
- On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus
- The (p,q)-sine and (p,q)-cosine polynomials and their associated (p,q)-polynomials