Home Some finite integrals involving Mittag-Leffler confluent hypergeometric function
Article
Licensed
Unlicensed Requires Authentication

Some finite integrals involving Mittag-Leffler confluent hypergeometric function

  • Ankit Pal ORCID logo EMAIL logo
Published/Copyright: June 1, 2023

Abstract

In this work, we propose some unified integral formulas for the Mittag-Leffler confluent hypergeometric function (MLCHF), and our findings are assessed in terms of generalized special functions. Additionally, certain unique cases of confluent hypergeometric function have been corollarily presented.

References

[1] D. Baleanu, P. Agarwal and S. D. Purohit, Certain fractional integral formulas involving the product of generalized Bessel functions, Scientific World J. 2013 (2013), 10.1155/2013/567132. 10.1155/2013/567132Search in Google Scholar PubMed PubMed Central

[2] S. Chandak, S. K. Q. Al-Omari and D. L. Suthar, Unified integral associated with the generalized V-function, Adv. Difference Equ. 2020 (2020), Paper No. 560. 10.1186/s13662-020-03019-8Search in Google Scholar

[3] J. Choi and P. Agarwal, Certain unified integrals involving a product of Bessel functions of the first kind, Honam Math. J. 35 (2013), no. 4, 667–677. 10.5831/HMJ.2013.35.4.667Search in Google Scholar

[4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. I, McGraw-Hill, New York, 1953. Search in Google Scholar

[5] F. Ghanim and H. F. Al-Janaby, An analytical study on Mittag-Leffler–confluent hypergeometric functions with fractional integral operator, Math. Methods Appl. Sci. 44 (2021), no. 5, 3605–3614. 10.1002/mma.6966Search in Google Scholar

[6] F. Ghanim, H. F. Al-Janaby and O. Bazighifan, Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function, Fractal Fract. 5 (2021), Paper No. 143. 10.3390/fractalfract5040143Search in Google Scholar

[7] F. Ghanim, S. Bendak and A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. A. 478 (2022), no. 2258, Paper No. 20210839. 10.1098/rspa.2021.0839Search in Google Scholar

[8] R. K. Jain, A. Bhargava and M. Rizwanullah, Certain new integrals including generalized Bessel–Maitland function and M-series, Int. J. Appl. Comput. Math. 8 (2022), no. 1, Paper No. 14. 10.1007/s40819-021-01202-3Search in Google Scholar

[9] A. A. Kilbas and M. Saigo, On solution of integral equation of Abel–Volterra type, Differential Integral Equations 8 (1995), no. 5, 993–1011. 10.57262/die/1369056041Search in Google Scholar

[10] J.-L. Lavoie and G. Trottier, On the sum of certain Appell series, Gaṇita 20 (1969), no. 1, 43–46. Search in Google Scholar

[11] G. M. Mittag-Leffler, Sur la nouvelle fonction E α ( x ) , C. R. Acad. Sci. Paris 137 (1903), 554–558. Search in Google Scholar

[12] K. S. Nisar, R. K. Parmar and A. H. Abusufian, Certain new unified integrals with the generalized k-Bessel function, Far East J. Math. Sci. 100 (2016), 1533–1544. 10.17654/MS100091533Search in Google Scholar

[13] K. S. Nisar, D. L. Suthar, S. D. Purohit and M. Aldhaifallah, Some unified integrals associated with the generalized Struve function, Proc. Jangjeon Math. Soc. 20 (2017), no. 2, 261–267. Search in Google Scholar

[14] A. Pal, R. K. Jana and A. K. Shukla, Some integral representations of the R q p ( α , β ; z ) function, Int. J. Appl. Comput. Math 6 (2020), Paper No. 72. 10.1007/s40819-020-00808-3Search in Google Scholar

[15] A. Pal, R. K. Jana and A. K. Shukla, Generalized fractional calculus operators and the R q p ( λ , η ; z ) function, Iran. J. Sci. Technol. Trans. Sci. 44 (2020), 1815–1825. 10.1007/s40995-020-00979-0Search in Google Scholar

[16] A. Pal, R. K. Jana, G. S. Khammash and A. K. Shukla, The incomplete exponential R q p ( α , β ; z ) function with applications, Georgian Math. J. 29 (2022), 95–107. 10.1515/gmj-2021-2112Search in Google Scholar

[17] T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15. Search in Google Scholar

[18] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and Series V.1. More Special Functions, Gordon and Breach, New York, 1992. Search in Google Scholar

[19] E. D. Rainville, Special Functions, The Macmillan, New York, 1960. Search in Google Scholar

[20] A. Wiman, Über den Fundamentalsatz in der Teorie der Funktionen E a ( x ) , Acta Math. 29 (1905), no. 1, 191–201. 10.1007/BF02403202Search in Google Scholar

[21] E. M. Wright, On the coefficients of power series having exponential singularities, J. Lond. Math. Soc. 8 (1933), no. 1, 71–79. 10.1112/jlms/s1-8.1.71Search in Google Scholar

Received: 2022-10-30
Accepted: 2023-05-18
Published Online: 2023-06-01
Published in Print: 2024-02-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2022-1113/html
Scroll to top button