Home On some generalized Simpson type inequalities for (α,m)-coordinated convex functions in context of q 1 q 2-calculus
Article
Licensed
Unlicensed Requires Authentication

On some generalized Simpson type inequalities for (α,m)-coordinated convex functions in context of q 1 q 2-calculus

  • Ghazala Gulshan , Muhammad Aamir Ali , Rashida Hussain , Asad Sadiq and Hüseyin Budak EMAIL logo
Published/Copyright: August 31, 2023

Abstract

In the current investigation, we offer the generalized version of q 1 q 2 -Simpson’s type inequalities via ( α , m ) -coordinated convex functions. To validate their generalized behavior, we demonstrate the link between our outcomes and the already derived ones. Moreover, we provide some application to special means of positive real numbers to support our findings. The principal outcomes raised in this investigation are extensions and generalizations of the comparable results in the history on Simpson’s inequalities for coordinated convex functions.

MSC 2020: 26D10; 26D15; 26A51

References

[1] M. A. Ali, H. Budak and M. Z. Sarikaya, On some new trapezoidal type inequalities for the functions of two variables via quantum calculus, to appear. Search in Google Scholar

[2] M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll. 12 (2009), no. 4, 1–18. Search in Google Scholar

[3] N. Alp and M. Z. Sarıkaya, Quantum Hermite–Hadamard’s type inequalities for co-ordinated convex functions, Appl. Math. E-Notes 20 (2020), 341–356. 10.1186/s13660-020-02442-5Search in Google Scholar

[4] N. Alp, M. Z. Sarikaya, M. Kunt and I. Iscan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci. 30 (2018), 193–203. 10.1016/j.jksus.2016.09.007Search in Google Scholar

[5] S. Bermudo, P. Kórus and J. E. Nápoles Valdés, On q-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar. 162 (2020), no. 1, 364–374. 10.1007/s10474-020-01025-6Search in Google Scholar

[6] H. Budak, M. A. Ali and M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl. 186 (2020), no. 3, 899–910. 10.1007/s10957-020-01726-6Search in Google Scholar

[7] H. Budak, S. Erden and M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Methods Appl. Sci. 44 (2021), no. 1, 378–390. 10.1002/mma.6742Search in Google Scholar

[8] S. S. Dragomir, On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math. 5 (2001), no. 4, 775–788. 10.11650/twjm/1500574995Search in Google Scholar

[9] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson’s inequality and applications, J. Inequal. Appl. 5 (2000), no. 6, 533–579. 10.1155/S102558340000031XSearch in Google Scholar

[10] T. Ernst, The History of Q-Calculus And New Method, Uppsala University, Uppsala, 2000. Search in Google Scholar

[11] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer, Basel, 2012. 10.1007/978-3-0348-0431-8Search in Google Scholar

[12] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004), no. 2–3, 281–300. 10.1016/S0898-1221(04)90025-9Search in Google Scholar

[13] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193–203. Search in Google Scholar

[14] V. Kac and P. Cheung, Quantum Calculus, Universitext, Springer, New York, 2001. 10.1007/978-1-4613-0071-7Search in Google Scholar

[15] H. Kalsoom, J. D. Wu, S. Hussain and M. A. Latif, Simpson’s type inequalities for co-ordinated convex functions on quantum calculus, Symmetry 11 (2019), no. 6, Article ID 768. 10.3390/sym11060768Search in Google Scholar

[16] M. Kunt, M. A. Latif, İ. İşcan and S. S. Dragomir, Quantum Hermite–Hadamard type inequality and some estimates of quantum midpoint type inequalities for double integrals, Sigma J. Eng. Nat. Sci. 37 (2019), 207–223. Search in Google Scholar

[17] M. A. Latif, S. S. Dragomir and E. Momoniat, Some ϕ-analogues of Hermite–Hadamard inequality for s-convex functions in the second sense and related estimates, J. King Saud Univ. Sci. 29 (2017), 263–273. 10.1016/j.jksus.2016.07.001Search in Google Scholar

[18] M. A. Noor, K. I. Noor and M. U. Awan, Some quantum estimates for Hermite–Hadamard inequalities, Appl. Math. Comput. 251 (2015), 675–679. 10.1016/j.amc.2014.11.090Search in Google Scholar

[19] M. A. Noor, K. I. Noor and M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269 (2015), 242–251. 10.1016/j.amc.2015.07.078Search in Google Scholar

[20] M. E. Özdemir, A. O. Akdemir, H. Kavurmaci and M. Avci, On the Simpson’s inequality for co-ordinated convex functions, preprint (2010), https://arxiv.org/abs/1101.0075. Search in Google Scholar

[21] M. Z. Sarikaya, E. Set and M. E. Özdemir, On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll. 13 (2010), no. 2, Article ID 2. Search in Google Scholar

[22] E. Set, M. Sardari, M. E. Özdemir and J. Rooin, On generalizations of the Hadamard inequality for ( α , m ) -convex functions, Kyungpook Math. J. 52 (2012), no. 3, 307–317. 10.5666/KMJ.2012.52.3.307Search in Google Scholar

[23] W. Sudsutad, S. K. Ntouyas and J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal. 9 (2015), no. 3, 781–793. 10.7153/jmi-09-64Search in Google Scholar

[24] J. Tariboon and S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ. 2013 (2013), 1–19. 10.1186/1687-1847-2013-282Search in Google Scholar

[25] J. Tariboon and S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl. 2014 (2014), Article ID 121. 10.1186/1029-242X-2014-121Search in Google Scholar

[26] M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial and Z. Zhang, Some new Newton’s type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry 12 (2020), no. 9, Article ID 1476. 10.3390/sym12091476Search in Google Scholar

[27] H. Zhuang, W. Liu and J. Park, Some quantum estimates of Hermite–Hadmard inequalities for quasi-convex functions, Miskolc Math. Notes., to appear. Search in Google Scholar

Received: 2023-03-25
Revised: 2023-07-19
Accepted: 2023-07-29
Published Online: 2023-08-31
Published in Print: 2024-11-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2023-0023/pdf
Scroll to top button