Abstract
In this paper, we express a generalization of the Ramanujan integral
Funding source: University Grants Commission
Award Identifier / Grant number: F.4-2/2006
Funding statement: This study was funded by University grants commission of India for the award of a Dr. D. S. Kothari Post Doctoral Fellowship (DSKPDF) (Grant number F.4-2/2006 (BSR)/MA/20-21/0061).
References
[1] T. Amdeberhan, L. A. Medina and V. H. Moll, The integrals in Gradshteyn and Ryzhik. V. Some trigonometric integrals, Sci. Ser. A Math. Sci. (N. S.) 15 (2007), 47–60. Search in Google Scholar
[2] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts Math. Math. Phys. 32, Stechert-Hafner, New York, 1935. Search in Google Scholar
[3] K. N. Boyadzhiev and V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 21: Hyperbolic functions, Sci. Ser. A Math. Sci. (N. S.) 22 (2012), 109–127. Search in Google Scholar
[4] R. V. Churchill, Complex Variables and Applications, 7th ed., McGraw-Hill, New York, 1977. Search in Google Scholar
[5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. 1, McGraw-Hill, New York, 1953. Search in Google Scholar
[6] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. 2, McGraw-Hill, New York, 1954. Search in Google Scholar
[7] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 8th ed., Elsevier/Academic, Amsterdam, 2015. Search in Google Scholar
[8] A. A. Kilbas and M. Saigo, H-Transforms, Anal. Methods Special Funct. 9, Chapman & Hall/CRC, Boca Raton, 2004. Search in Google Scholar
[9] A. A. Kilbas, M. Saigo and J. J. Trujillo, On the generalized Wright function, Fract. Calc. Appl. Anal. 5 (2002), no. 4, 437–460. Search in Google Scholar
[10] K. T. Kohl and V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 20: Hypergeometric functions, Sci. Ser. A Math. Sci. (N. S.) 21 (2011), 43–54. Search in Google Scholar
[11] V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 13: Trigonometric forms of the beta function, Sci. Ser. A Math. Sci. (N. S.) 19 (2010), 91–96. Search in Google Scholar
[12] V. H. Moll, The integrals in Gradshteyn and Ryzhik. Part 25: Evaluation by series, Sci. Ser. A Math. Sci. (N. S.) 23 (2012), 53–65. Search in Google Scholar
[13] F. Oberhettinger, Tables of Fourier Transforms and Fourier Transforms of Distributions, Springer, Berlin, 1990. 10.1007/978-3-642-74349-8Search in Google Scholar
[14] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University, Cambridge, 2010. Search in Google Scholar
[15] M. I. Qureshi and S. A. Dar, Evaluation of some definite integrals of Ramanujan, using hypergeometric approach, Palest. J. Math. 7 (2018), no. 2, 620–623. Search in Google Scholar
[16] M. I. Qureshi and S. A. Dar, Generalizations of Ramanujan’s integral associated with infinite Fourier cosine transforms in terms of hypergeometric functions and its applications, Kyungpook Math. J. 60 (2020), no. 4, 781–795. Search in Google Scholar
[17]
M. I. Qureshi and S. A. Dar,
Generalizations and applications of Srinivasa Ramanujan’s integral
[18] E. D. Rainville, Special Functions, Macmillan, New York, 1971. Search in Google Scholar
[19] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, John Wiley & Sons, New York, 1984. Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On some generalized Simpson type inequalities for (α,m)-coordinated convex functions in context of q 1 q 2-calculus
- Characterization of lacunary ℐ-convergent sequences in credibility space
- Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
- Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space
- Consequences of an infinite Fourier cosine transform-based Ramanujan integral
- Deferred 𝜎-statistical summability in intuitionistic fuzzy 𝑟-normed linear spaces
- A relaxation theorem for a first-order set differential inclusion in a metric space
- η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds
Articles in the same Issue
- Frontmatter
- On some generalized Simpson type inequalities for (α,m)-coordinated convex functions in context of q 1 q 2-calculus
- Characterization of lacunary ℐ-convergent sequences in credibility space
- Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
- Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space
- Consequences of an infinite Fourier cosine transform-based Ramanujan integral
- Deferred 𝜎-statistical summability in intuitionistic fuzzy 𝑟-normed linear spaces
- A relaxation theorem for a first-order set differential inclusion in a metric space
- η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds