Home Deferred 𝜎-statistical summability in intuitionistic fuzzy π‘Ÿ-normed linear spaces
Article
Licensed
Unlicensed Requires Authentication

Deferred 𝜎-statistical summability in intuitionistic fuzzy π‘Ÿ-normed linear spaces

  • Vijay Kumar , Archana Sharma and Reena Kumari EMAIL logo
Published/Copyright: April 11, 2024

Abstract

In this paper, we define and study three novel summability concepts – strong deferred 𝜎-summability, deferred 𝜎-statistical summability, and 𝜎-statistical summability in intuitionistic fuzzy π‘Ÿ-normed linear spaces (briefly called IF-π‘Ÿ-NLS) by using 𝜎-mean. We also provide an example in support of the new notions and uncover some interesting relationships. Additionally, we study deferred 𝜎-statistical summability in the context of two pairs of sequences of positive integers, namely, Ξ± n , Ξ³ n , and u n , v n satisfying Ξ± n ≀ u n < v n ≀ Ξ³ n .

MSC 2020: 40G15; 03E72

References

[1] R. P. Agnew, On deferred CesΓ ro means, Ann. of Math. (2) 33 (1932), no. 3, 413–421. 10.2307/1968524Search in Google Scholar

[2] R. Antal, M. Chawla and V. Kumar, Rough statistical convergence in intuitionistic fuzzy normed spaces, Filomat 35 (2021), no. 13, 4405–4416. 10.2298/FIL2113405ASearch in Google Scholar

[3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96. 10.1016/S0165-0114(86)80034-3Search in Google Scholar

[4] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003), no. 3, 687–705. Search in Google Scholar

[5] S. Banach, ThΓ©orie des opΓ©rations linΓ©aires, Γ‰ditions Jacques Gabay, Sceaux, 1932. Search in Google Scholar

[6] L. C. Barros, R. C. Bassanezi and P. A. Tonelli, Fuzzy modelling in population dynamics, Ecol. Model. 128 (2000), 27–33. 10.1016/S0304-3800(99)00223-9Search in Google Scholar

[7] S. C. Cheng and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), no. 5, 429–436. Search in Google Scholar

[8] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl. 244 (2000), no. 1, 251–261. 10.1006/jmaa.2000.6725Search in Google Scholar

[9] J. S. Connor, The statistical and strong 𝑝-CesΓ ro convergence of sequences, Analysis 8 (1988), no. 1–2, 47–63. 10.1524/anly.1988.8.12.47Search in Google Scholar

[10] P. Debnath, A generalized statistical convergence in intuitionistic fuzzy 𝑛-normed linear spaces, Ann. Fuzzy Math. Inform. 12 (2016), no. 4, 559–572. Search in Google Scholar

[11] O. Duman, M. K. Khan and C. Orhan, 𝐴-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003), no. 4, 689–699. 10.7153/mia-06-62Search in Google Scholar

[12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. 10.4064/cm-2-3-4-241-244Search in Google Scholar

[13] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (1992), no. 2, 239–248. 10.1016/0165-0114(92)90338-5Search in Google Scholar

[14] A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Chaos Solitons Fractals 29 (2005), 33–56. 10.1016/j.arcontrol.2005.01.001Search in Google Scholar

[15] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. 10.1524/anly.1985.5.4.301Search in Google Scholar

[16] S. GΓ€hler, Lineare 2-normierte RΓ€ume, Math. Nachr. 28 (1964), 1–43. 10.1002/mana.19640280102Search in Google Scholar

[17] S. GΓ€hler, Untersuchungen ΓΌber verallgemeinerte π‘š-metrische RΓ€ume, I, II, III, Math. Nachr. 40 (1969), 165–189. 10.1002/mana.19690400114Search in Google Scholar

[18] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems 4 (1980), no. 3, 221–234. 10.1016/0165-0114(80)90012-3Search in Google Scholar

[19] H. Gunawan and M. Mashadi, On 𝑛-normed spaces, Int. J. Math. Math. Sci. 27 (2001), no. 10, 631–639. 10.1155/S0161171201010675Search in Google Scholar

[20] B. Hazarika, V. Kumar and B. Lafuerza-GuillΓ©n, Generalized ideal convergence in intuitionistic fuzzy normed linear spaces, Filomat 27 (2013), no. 5, 811–820. 10.2298/FIL1305811HSearch in Google Scholar

[21] L. Hong and J.-Q. Sun, Bifurcations of fuzzy nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 11 (2006), no. 1, 1–12. 10.1016/j.cnsns.2004.11.001Search in Google Scholar

[22] S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals 35 (2008), no. 4, 763–769. 10.1016/j.chaos.2006.05.046Search in Google Scholar

[23] A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems 12 (1984), no. 2, 143–154. 10.1016/0165-0114(84)90034-4Search in Google Scholar

[24] M. KΓΌΓ§ΓΌkaslan and M. YΔ±lmaztΓΌrk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), no. 2, 357–366. 10.5666/KMJ.2016.56.2.357Search in Google Scholar

[25] V. Kumar, On ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Southeast Asian Bull. Math. 36 (2012), no. 1, 101–112. Search in Google Scholar

[26] V. Kumar and K. Kumar, On ideal convergence of sequences in intuitionistic fuzzy normed spaces, SelΓ§uk J. Appl. Math. 10 (2009), no. 2, 27–41. Search in Google Scholar

[27] V. Kumar and M. Mursaleen, On ( Ξ» , ΞΌ ) -statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat 25 (2011), no. 2, 109–120. 10.2298/FIL1102109KSearch in Google Scholar

[28] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. 10.1007/BF02393648Search in Google Scholar

[29] I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 141–145. 10.1017/S0305004100065312Search in Google Scholar

[30] R. Malčeski, Strong 𝑛-convex 𝑛-normed spaces, Mat. Bilten (1997), no. 21, 81–102. Search in Google Scholar

[31] S. Melliani, M. KuΓ§ukaslan, H. Sadiki and L. S. Chadli, Deferred statistical convergence of sequences in intuitionistic fuzzy normed spaces, Notes Intuitionistic Fuzzy Sets 24 (2018), no. 3, 64–78. 10.7546/nifs.2018.24.3.64-78Search in Google Scholar

[32] H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1811–1819. 10.1090/S0002-9947-1995-1260176-6Search in Google Scholar

[33] A. Misiak, 𝑛-inner product spaces, Math. Nachr. 140 (1989), 299–319. 10.1002/mana.19891400121Search in Google Scholar

[34] S. A. Mohiuddine and Q. M. D. Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fractals 42 (2009), no. 3, 1731–1737. 10.1016/j.chaos.2009.03.086Search in Google Scholar

[35] Mursaleen, On infinite matrices and invariant means, Indian J. Pure Appl. Math. 10 (1979), no. 4, 457–460. Search in Google Scholar

[36] M. Mursaleen and O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), no. 11, 1700–1704. 10.1016/j.aml.2009.06.005Search in Google Scholar

[37] M. Mursaleen and Q. M. D. Lohani, Intuitionistic fuzzy 2-normed space and some related concepts, Chaos Solitons Fractals 42 (2009), no. 1, 224–234. 10.1016/j.chaos.2008.11.006Search in Google Scholar

[38] M. Mursaleen and S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math. 233 (2009), no. 2, 142–149. 10.1016/j.cam.2009.07.005Search in Google Scholar

[39] A. Narayanan and S. Vijayabalaji, Fuzzy 𝑛-normed linear space, Int. J. Math. Math. Sci. 24 (2005), 3963–3977. 10.1155/IJMMS.2005.3963Search in Google Scholar

[40] L. Nayak, M. Mursaleen and P. Baliarsingh, On deferred statistical 𝐴-convergence of fuzzy sequence and applications, Iran. J. Fuzzy Syst. 19 (2022), no. 2, 119–131. Search in Google Scholar

[41] F. Nuray, Strongly deferred invariant convergence and deferred invariant statistical convergence, J. Comput. Sci. Comput. Math. 10 (2020), no. 1, 1–6. 10.20967/jcscm.2020.01.001Search in Google Scholar

[42] F. Nuray and E. Savaş, Invariant statistical convergence and 𝐴-invariant statistical convergence, Indian J. Pure Appl. Math. 25 (1994), no. 3, 267–274. Search in Google Scholar

[43] N. Pancaroglu and F. Nuray, Statistical lacunary invariant summability, Theor. Math. Appl. 3 (2013), no. 2, 71–78. Search in Google Scholar

[44] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81–94. 10.1215/S0012-7094-63-03009-6Search in Google Scholar

[45] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27 (2006), no. 2, 331–344. 10.1016/j.chaos.2005.03.019Search in Google Scholar

[46] T. Ε alΓ‘t, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150. Search in Google Scholar

[47] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math. 31 (1989), no. 1, 1–8. Search in Google Scholar

[48] E. Savaş and F. Nuray, On 𝜎-statistically convergence and lacunary 𝜎-statistically convergence, Math. Slovaca 43 (1993), no. 3, 309–315. Search in Google Scholar

[49] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104–110. 10.2307/2039044Search in Google Scholar

[50] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375. 10.2307/2308747Search in Google Scholar

[51] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. 10.2140/pjm.1960.10.313Search in Google Scholar

[52] M. Sen and P. Debnath, Lacunary statistical convergence in intuitionistic fuzzy 𝑛-normed linear spaces, Math. Comput. Modelling 54 (2011), no. 11–12, 2978–2985. 10.1016/j.mcm.2011.07.020Search in Google Scholar

[53] M. Sen and P. Debnath, Statistical convergence in intuitionistic fuzzy 𝑛-normed linear spaces, Fuzzy Inf. Eng. 3 (2011), no. 3, 259–273. 10.1007/s12543-011-0082-9Search in Google Scholar

[54] H. ŞengΓΌl, M. Et and M. Işık, On 𝐼-deferred statistical convergence of order 𝛼, Filomat 33 (2019), no. 9, 2833–2840. 10.2298/FIL1909833SSearch in Google Scholar

[55] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), no. 1, 73–74. Search in Google Scholar

[56] S. Vijayabalaji, N. Thillaigovindan and Y. B. Jun, Intuitionistic fuzzy 𝑛-normed linear space, Bull. Korean Math. Soc. 44 (2007), no. 2, 291–308. 10.4134/BKMS.2007.44.2.291Search in Google Scholar

[57] L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338–353. 10.1016/S0019-9958(65)90241-XSearch in Google Scholar

[58] A. Zigmund, Trigonometric series, Cambridge University, Cambridge, 2002. Search in Google Scholar

Received: 2023-11-03
Accepted: 2024-01-07
Published Online: 2024-04-11
Published in Print: 2024-11-01

Β© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2023-0088/html
Scroll to top button