Abstract
In this article we look at the geometric structure of the feet of an orthogonal Buekenhout–Metz unital 𝓤 in PG(2, q2). We show that the feet of each point form a set of type (0, 1, 2, 4). Further, we discuss the structure of any 4-secants, and determine exactly when the feet form an arc.
Acknowledgements
The authors would like to thank the anonymous referees for their detailed reviews together with helpful comments and suggestions. It has led to several corrections and improvements.
Communicated by: J. Bamberg
References
[1] N. Abarzúa, R. Pomareda, O. Vega, Feet in orthogonal-Buekenhout-Metz unitals. Adv. Geom. 18 (2018), 229–236. MR3785423 Zbl 1390.5100310.1515/advgeom-2017-0050Search in Google Scholar
[2] A. Aguglia, G. L. Ebert, A combinatorial characterization of classical unitals. Arch. Math. (Basel) 78 (2002), 166–172. MR1888419 Zbl 1006.5100410.1007/s00013-002-8231-3Search in Google Scholar
[3] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60 (1954), 156–186. MR63056 Zbl 0056.3850310.1007/BF01187370Search in Google Scholar
[4] R. D. Baker, G. L. Ebert, Intersection of unitals in the Desarguesian plane. In: Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), volume 70, 87–94, 1990. MR1041587 Zbl 0695.51009Search in Google Scholar
[5] R. D. Baker, G. L. Ebert, On Buekenhout-Metz unitals of odd order. J. Combin. Theory Ser. A 60 (1992), 67–84. MR1156648 Zbl 0783.0503110.1016/0097-3165(92)90038-VSearch in Google Scholar
[6] S. Barwick, G. Ebert, Unitals in projective planes. Springer 2008. MR2440325 Zbl 1156.51006Search in Google Scholar
[7] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. MR1484478 Zbl 0898.6803910.1006/jsco.1996.0125Search in Google Scholar
[8] R. H. Bruck, R. C. Bose, The construction of translation planes from projective spaces. J. Algebra 1 (1964), 85–102. MR161206 Zbl 0117.3740210.1016/0021-8693(64)90010-9Search in Google Scholar
[9] R. H. Bruck, R. C. Bose, Linear representations of projective planes in projective spaces. J. Algebra 4 (1966), 117–172. MR196590 Zbl 0141.3680110.1016/0021-8693(66)90054-8Search in Google Scholar
[10] F. Buekenhout, Existence of unitals in finite translation planes of order q2 with a kernel of order q. Geom. Dedicata 5 (1976), 189–194. MR448236 Zbl 0336.5001410.1007/BF00145956Search in Google Scholar
[11] L. E. Dickson, On families of quadratic forms in a general field. Quart. J. Pure Appl. Math. 39 (1907), 316–333. MR1410619 Zbl 0916.51011Search in Google Scholar
[12] G. L. Ebert, On Buekenhout-Metz unitals of even order. European J. Combin. 13 (1992), 109–117. MR1158804 Zbl 0758.5100610.1016/0195-6698(92)90042-XSearch in Google Scholar
[13] G. L. Ebert, Buekenhout-Tits unitals. J. Algebraic Combin. 6 (1997), 133–140. MR1436531 Zbl 0877.5100810.1023/A:1008691020874Search in Google Scholar
[14] J. Faulkner, G. Van de Voorde, On the equivalence, stabilisers, and feet of Buekenhout-Tits unitals. Des. Codes Cryptogr. 2023. https://doi.org/10.1007/s10623-023-01234-4Search in Google Scholar
[15] J. Faulkner, G. Van de Voorde, On the equivalence, stabilisers, and feet of Buekenhout-Tits unitals. Des. Codes Cryptogr. 2023. https://doi.org/10.1007/s10623-023-01234-410.1007/s10623-023-01234-4Search in Google Scholar
[16] J. W. P. Hirschfeld, T. Szőnyi, Sets in a finite plane with few intersection numbers and a distinguished point. Discrete Math. 97 (1991), 229–242. MR1140805 Zbl 0748.5101110.1016/0012-365X(91)90439-9Search in Google Scholar
[17] M. Lavrauw, T. Popiel, The symmetric representation of lines in PG(𝔽3 ⊗ 𝔽3). Discrete Math. 343 (2020), 111775, 22 pages. MR4045559 Zbl 1433.0506310.1016/j.disc.2019.111775Search in Google Scholar
[18] R. Metz, On a class of unitals. Geom. Dedicata 8 (1979), 125–126. MR533633 Zbl 0403.5100710.1007/BF00147935Search in Google Scholar
[19] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. (4) 64 (1964), 1–76. MR169117 Zbl 0128.1500210.1007/BF02410047Search in Google Scholar
[20] J. A. Thas, A combinatorial characterization of Hermitian curves. J. Algebraic Combin. 1 (1992), 97–102. MR1162643 Zbl 0784.5102310.1023/A:1022437415099Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Inequalities for f*-vectors of lattice polytopes
- Lower bound on the translative covering density of octahedra
- Variations on the Weak Bounded Negativity Conjecture
- Poisson Structures on moduli spaces of Higgs bundles over stacky curves
- Generalized Shioda–Inose structures of order 3
- Deformation cones of Tesler polytopes
- Some observations on conformal symmetries of G2-structures
- Characterization of the sphere and of bodies of revolution by means of Larman points
- Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs
- The feet of orthogonal Buekenhout–Metz unitals
Articles in the same Issue
- Frontmatter
- Inequalities for f*-vectors of lattice polytopes
- Lower bound on the translative covering density of octahedra
- Variations on the Weak Bounded Negativity Conjecture
- Poisson Structures on moduli spaces of Higgs bundles over stacky curves
- Generalized Shioda–Inose structures of order 3
- Deformation cones of Tesler polytopes
- Some observations on conformal symmetries of G2-structures
- Characterization of the sphere and of bodies of revolution by means of Larman points
- Fractional-linear integrals of geodesic flows on surfaces and Nakai’s geodesic 4-webs
- The feet of orthogonal Buekenhout–Metz unitals