Abstract
It is shown that a smooth surface lying on a nodal quartic hypersurface in ℙ4 is either regular or an elliptic conic bundle of degree 8. Furthermore, the latter configuration is shown to exist.
Communicated by: C. Scheiderer
Acknowledgements
This is the second paper that originates from the work [17] Igor Reider and myself archived in 2016. I would like to express my gratitude to Igor for the moments we shared trying to understand the geometry of surfaces in ℙ4, to Laurent Gruson for the many e-conversations we had concerning the rich geometry of Cremona transformations of ℙ4 and of Segre cubics, and to Stéphane Druel and Jean-Philippe Monnier for the discussions around Lemma 4.5. Finally, I would like to thank the referee for the constructive criticism on questions of presentation and the suggestion to use Macaulay 2 to prove the existence of the nodal quartic in Proposition 4.4.
References
[1] H. Abo, W. Decker, N. Sasakura, An elliptic conic bundle in ℙ4 arising from a stable rank-3 vector bundle. Math. Z. 229 (1998), 725–741. MR1664785 Zbl 0954.1402810.1007/PL00004679Search in Google Scholar
[2] A. Aure, On surfaces in projective 4-space. Ph.D. Thesis, Oslo, 1987.Search in Google Scholar
[3] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces. Springer 1984. MR749574 Zbl 0718.1402310.1007/978-3-642-96754-2Search in Google Scholar
[4] E. Bombieri, Canonical models of surfaces of general type. Inst. Hautes Études Sci. Publ. Math. no. 42 (1973), 171–219. MR318163 Zbl 0259.1400510.1007/BF02685880Search in Google Scholar
[5] R. Braun, K. Ranestad, Conic bundles in projective fourspace. In: Algebraic geometry (Catania, 1993/Barcelona, 1994), 331–339, Dekker 1998. MR1651102 Zbl 0945.14007Search in Google Scholar
[6] W. Decker, D. Eisenbud, Sheaf algorithms using the exterior algebra. In: Computations in algebraic geometry with Macaulay 2, volume 8 of Algorithms Comput. Math., 215–249, Springer 2002. MR1949553 Zbl 0994.1401010.1007/978-3-662-04851-1_9Search in Google Scholar
[7] P. Ellia, G. Sacchiero, Smooth surfaces of ℙ4 ruled in conics. In: Algebraic geometry (Catania, 1993/Barcelona, 1994), 49–62, Dekker 1998. MR1651089 Zbl 0940.14025Search in Google Scholar
[8] R. Friedman, Simultaneous resolution of threefold double points. Math. Ann. 274 (1986), 671–689. MR848512 Zbl 0576.1401310.1007/BF01458602Search in Google Scholar
[9] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. no. 28 (1966), 255. MR217086 Zbl 0135.3970110.1007/BF02684343Search in Google Scholar
[10] R. Hartshorne, Algebraic geometry. Springer 1977. MR0463157 Zbl 0367.1400110.1007/978-1-4757-3849-0Search in Google Scholar
[11] G. Horrocks, D. Mumford, A rank 2 vector bundle on ℙ4 with 15, 000 symmetries. Topology12 (1973), 63–81. MR382279 Zbl 0255.1401710.1016/0040-9383(73)90022-0Search in Google Scholar
[12] P. Ionescu, Embedded projective varieties of small invariants. In: Algebraic geometry, Bucharest 1982 (Bucharest, 1982), volume 1056 of Lecture Notes in Math., 142–186, Springer 1984. MR749942 Zbl 0542.1402410.1007/BFb0071773Search in Google Scholar
[13] P. Ionescu, M. Toma, On very ample vector bundles on curves. Internat. J. Math. 8 (1997), 633–643. MR1468354 Zbl 0899.1401110.1142/S0129167X97000330Search in Google Scholar
[14] L. Koelblen, Surfaces de ℙ4 tracées sur une hypersurface cubique. J. Reine Angew. Math. 433 (1992), 113–141. MR1191602 Zbl 0753.1403310.1515/crll.1992.433.113Search in Google Scholar
[15] A. Lanteri, On the existence of scrolls in ℙ4. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8)69 (1980), 223–227 (1981). MR670824 Zbl 0509.14042Search in Google Scholar
[16] D. Naie, I. Reider, Twisted Kodaira-Spencer classes and the geometry of surfaces of general type. J. Algebraic Geom. 23 (2014), 165–200. MR3121851 Zbl 1299.1403410.1090/S1056-3911-2013-00609-8Search in Google Scholar
[17] D. Naie, I. Reider, Surfaces in ℙ4 lying lying on small degree hypersurfaces. Preprint 2016, MR1709495 Zbl 0944.14006Search in Google Scholar
[18] K. Ranestad, A geometric construction of elliptic conic bundles in ℙ4. Math. Z. 231 (1999), 771–781. MR1709495 Zbl 0944.1400610.1007/PL00004752Search in Google Scholar
[19] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. of Math. (2)127 (1988), 309–316. MR932299 Zbl 0663.1401010.2307/2007055Search in Google Scholar
[20] L. Roth, On the Projective Classification of Surfaces. Proc. London Math. Soc. (2)42 (1936), 142–170. MR1577025 Zbl 0281.1402310.1112/plms/s2-42.1.142Search in Google Scholar
[21] F. Severi, Intorno ai punti doppi improri di una superficie generale dello spazio ai quattro dimensioni, e a suoi punti tripliapparenti. Rend. Circ. Math. Palermo15 (1901), 33–51. JFM 32.0648.0410.1007/BF03017734Search in Google Scholar
[22] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4. Amer. J. Math. 95 (1973), 403–418. MR340253 Zbl 0281.1402310.2307/2373791Search in Google Scholar
[23] A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface. (Russian) Dokl. Akad. Nauk SSSR270 (1983), no. 6, 1294–1297. English translation: Soviet Math. Dokl. 27 (1983), no. 3, 735–739. MR712934 Zbl 0537.14003Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Malgrange–Galois groupoid of the Painlevé VI equation with parameters
- Explicit Nikulin configurations on Kummer surfaces
- Irregular surfaces on hypersurfaces of degree 4 with non-degenerate isolated singularities
- Counting isolated points outside the image of a polynomial map
- An inverse approach to hyperspheres of prescribed mean curvature in Euclidean space
- Bridgeland stability conditions on surfaces with curves of negative self-intersection
- Computation of Dressians by dimensional reduction
- A few more extensions of Putinar’s Positivstellensatz to non-compact sets
- On the Jacobian locus in the Prym locus and geodesics
- Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers
Articles in the same Issue
- Frontmatter
- The Malgrange–Galois groupoid of the Painlevé VI equation with parameters
- Explicit Nikulin configurations on Kummer surfaces
- Irregular surfaces on hypersurfaces of degree 4 with non-degenerate isolated singularities
- Counting isolated points outside the image of a polynomial map
- An inverse approach to hyperspheres of prescribed mean curvature in Euclidean space
- Bridgeland stability conditions on surfaces with curves of negative self-intersection
- Computation of Dressians by dimensional reduction
- A few more extensions of Putinar’s Positivstellensatz to non-compact sets
- On the Jacobian locus in the Prym locus and geodesics
- Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers