Home Mathematics On the Jacobian locus in the Prym locus and geodesics
Article
Licensed
Unlicensed Requires Authentication

On the Jacobian locus in the Prym locus and geodesics

  • Sara Torelli EMAIL logo
Published/Copyright: April 18, 2022
Become an author with De Gruyter Brill

Abstract

Let Jg be the Jacobian locus and let Pg+1 be the Prym locus, in the moduli space Ag of principally polarized abelian varieties of dimension g, for g ≥ 7. We study the extrinsic geometry of JgPg+1, under the inclusion provided by the theory of generalized Prym varieties introduced by Beauville. More precisely, we address the problem if certain geodesic curves, defined with respect to the Siegel metric of Ag, starting at a Jacobian variety [JC] ∈ Ag of a curve [C] ∈ Mg and with direction ζT[JC]Jg, are locally contained in Pg+1. The result is that for a general JC, the answer is negative, if the rank k of ζ is such that k < Cliff C − 3, where Cliff C denotes the Clifford index of C.

MSC 2010: 14H40; 14C30; 14H10; 14H15; 32G20; 14k12

Acknowledgements

I am very grateful to Gian Pietro Pirola, for the interesting and profound research conversations that we have had over time and that have stimulated this work. I would also like to thank Juan Carlos Naranjo and Alessandro Ghigi, for their helpful explanations and comments.

  1. Funding: The author was supported by PRIN 2017 Moduli spaces and Lie Theory, INdAM - GNSAGA, FAR 2016 (Pavia) “Varietà algebriche, calcolo algebrico, grafi orientati e topologici” and MIUR, Programma Dipartimenti di Eccellenza (2018−2022) - Dipartimento di Matematica “F. Casorati”, Università degli Studi di Pavia.

  2. Communicated by: R. Cavalieri

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of algebraic curves. Vol. I. Springer 1985. MR770932 Zbl 0559.1401710.1007/978-1-4757-5323-3Search in Google Scholar

[2] A. Beauville, Prym varieties and the Schottky problem. Invent. Math. 41 (1977), 149–196. MR572974 Zbl 0333.1401310.1007/BF01418373Search in Google Scholar

[3] A. Beauville, Complex algebraic surfaces. Cambridge Univ. Press 1983. MR732439 Zbl 0512.14020Search in Google Scholar

[4] L. Caporaso, Linear series on semistable curves. Int. Math. Res. Not. volume 2011, issue 13, (2011), 2921–2969. MR2817683 Zbl 1231.1400710.1093/imrn/rnq188Search in Google Scholar

[5] F. Catanese, M. Dettweiler, Answer to a question by Fujita on variation of Hodge structures. In: Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday, volume 74 of Adv. Stud. Pure Math., 73–102, Math. Soc. Japan, Tokyo 2017. MR3791209 Zbl 1388.1403710.2969/aspm/07410073Search in Google Scholar

[6] M. Coppens, G. Martens, Secant spaces and Clifford’s theorem. Compositio Math. 78 (1991), 193–212. MR1104787 Zbl 0741.14035Search in Google Scholar

[7] M. Cornalba, Systèmes pluricanoniques sur l′espace des modules des courbes et diviseurs de courbes k-gonales (d′après Harris et Mumford). Seminar Bourbaki, vol. 1983/84, Exp. 615. Astérisque no. 121-122, (1985), 7–24. MR768951 Zbl 0551.14014Search in Google Scholar

[8] D. Eisenbud, H. Lange, G. Martens, F.-O. Schreyer, The Clifford dimension of a projective curve. Compositio Math. 72 (1989), 173–204. MR1030141 Zbl 0703.14020Search in Google Scholar

[9] G. Farkas, Prym varieties and their moduli. In: Contributions to algebraic geometry, 215–255, Eur. Math. Soc., Zürich 2012. MR2976944 Zbl 1259.1403210.4171/114-1/8Search in Google Scholar

[10] T. Fujita, The sheaf of relative canonical forms of a Kähler fiber space over a curve. Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 183–184. MR510945 Zbl 0412.3202910.3792/pjaa.54.183Search in Google Scholar

[11] A. Ghigi, On some differential-geometric aspects of the Torelli map. Boll. Unione Mat. Ital. 12 (2019), 133–144. MR3936299 Zbl 1444.1402810.1007/s40574-018-0171-3Search in Google Scholar

[12] A. Ghigi, G. P. Pirola, S. Torelli, Totally geodesic subvarieties in the moduli space of curves. Commun. Contemp. Math. 23 (2021), article 2050020, 13 pages. MR4216422 Zbl 1455.1401310.1142/S0219199720500200Search in Google Scholar

[13] V. González-Alonso, L. Stoppino, S. Torelli, On the rank of the flat unitary summand of the Hodge bundle. Trans. Amer. Math. Soc. 372 (2019), 8663–8677. MR4029708 Zbl 1428.1401610.1090/tran/7868Search in Google Scholar

[14] V. González-Alonso, S. Torelli, Families of curves with Higgs field of arbitrarily large kernel. Bull. Lond. Math. Soc. 53 (2021), 493–506. MR4239191 Zbl 0736705310.1112/blms.12437Search in Google Scholar

[15] P. A. Griffiths, A transcendental method in algebraic geometry. In: Actes du Congrès International des Mathèmaticiens (Nice, 1970), Tome 1, 113–119, 1971. MR0414551 Zbl 0227.14008Search in Google Scholar

[16] J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves. Invent. Math. 67 (1982), 23–88. MR664324 Zbl 0506.1401610.1007/978-1-4757-4265-7_8Search in Google Scholar

[17] B. Klingler, A. Otwinowska, On the closure of the positive Hodge locus. Preprint 2019, arXiv:1901.10003 [math.AG]Search in Google Scholar

[18] K. Konno, Clifford index and the slope of fibered surfaces. J. Algebraic Geom. 8 (1999), 207–220. MR1675150 Zbl 0979.14004Search in Google Scholar

[19] D. Mumford, Prym varieties. I. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers), 325–350, Academic Press, New York 1974. MR0379510 Zbl 0299.1401810.1016/B978-0-12-044850-0.50032-0Search in Google Scholar

[20] G. P. Pirola, S. Torelli, Massey products and Fujita decompositions on fibrations of curves. Collect. Math. 71 (2020), 39–61. MR4047698 Zbl 1439.1404310.1007/s13348-019-00247-4Search in Google Scholar

[21] V. V. Shokurov, Prym varieties: theory and applications. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 785–855. English translation: Math. USSR-Izv. 23 (1984), no. 1, 83–147. MR712095 Zbl 0572.1402510.1070/IM1984v023n01ABEH001459Search in Google Scholar

Received: 2020-05-20
Revised: 2021-06-16
Published Online: 2022-04-18
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2021-0037/html
Scroll to top button