Abstract
The Malgrange–Galois groupoid of Painlevé IV equations is known to be, for very general values of parameters, the pseudogroup of transformations of the phase space preserving a volume form, a time form and the equation. Here we compute the Malgrange–Galois groupoid of the Painlevé VI family including all parameters as new dependent variables. We conclude that it is the pseudogroup of transformations preserving the parameter values, the differential of the independent variable, a volume form in the dependent variables and the equation. This implies that a solution of a Painlevé VI equation depending analytically on the parameters does not satisfy any new partial differential equation (including derivatives with respect to parameters) which is not derived from Painlevé VI.
Funding statement: We would like to thank the Université de Rennes 1 and the Universidad Nacional de Colombia for their hospitality and support. D. Blázquez-Sanz has been partially funded by the Colciencias project “Estructuras lineales en geometría y topología” 776-2017 code 57708 (Hermes UN 38300). G. Casale has been partially funded by the Math-AMSUD project “Complex Geometry and Foliations”. J. S. Díaz Arboleda has been partially funded by the Colciencias program 647 “Doctorados Nacionales”.
Acknowledgements
We want to thank the anonymous referee for his/her careful reading, suggestions and corrections that greatly helped to improve the quality of the paper.
References
[1] D. Blázquez Sanz, G. Casale, J. S. Díaz Arboleda, Differential Galois theory and isomonodromic deformations. SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 055, 35 pages. MR3988815 Zbl 1427.5302410.3842/SIGMA.2019.055Search in Google Scholar
[2] S. Cantat, F. Loray, Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation. Ann. Inst. Fourier (Grenoble) 59 (2009), 2927–2978. MR2649343 Zbl 1204.3412310.5802/aif.2512Search in Google Scholar
[3] G. Casale, Sur le groupoïde de Galois d’un feuilletage. PhD thesis, Université Paul Sabatier – Toulouse III, 2004. https://tel.archives-ouvertes.fr/tel-00012021Search in Google Scholar
[4] G. Casale, Une preuve galoisienne de l’irréductibilité au sens de Nishioka–Umemura de la première équation de Painlevé. Astérisque no. 323 (2009), 83–100. MR2647966 Zbl 1209.12002Search in Google Scholar
[5] G. Casale, An introduction to Malgrange pseudogroup. In: Arithmetic and Galois theories of differential equations, volume 23 of Sémin. Congr., 89–113, Soc. Math. France, Paris 2011. MR3076080 Zbl 1356.34089Search in Google Scholar
[6] G. Casale, D. Davy, Spécialisaton du groupoide de Galois d’un champ de vecteurs. Preprint 2020, arXiv:2004.09122 [math.CA]Search in Google Scholar
[7] P. J. Cassidy, The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras. J. Algebra 121 (1989), 169–238. MR992323 Zbl 0678.1401110.1016/0021-8693(89)90092-6Search in Google Scholar
[8] P. J. Cassidy, M. F. Singer, Galois theory of parameterized differential equations and linear differential algebraic groups. In: Differential equations and quantum groups, volume 9 of IRMA Lect. Math. Theor. Phys., 113–155, Eur. Math. Soc., Zürich 2007. MR2322329 Zbl 1230.1200310.4171/020-1/7Search in Google Scholar
[9] D. Davy, Spécialisation du pseudo-groupe de Malgrange et irréductibilité. PhD thesis, Université Rennes 1, 2016. https://tel.archives-ouvertes.fr/tel-01491008Search in Google Scholar
[10] J. Drach, Essai sur la théorie générale de l’itération et sur la classification des transcendantes. Ann. Sci. École Norm. Sup. (3) 15 (1898), 243–384. MR1508959 JFM 29.0349.0610.24033/asens.457Search in Google Scholar
[11] J. Drach, Sur le groupe de rationalité des équations du second ordre de M. Painlevé. Bull. Sci. Math., II. Sér. 39 (1915), 149–166. JFM 45.1296.03Search in Google Scholar
[12] K. Iwasaki, Finite branch solutions to Painlevé VI around a fixed singular point. Adv. Math. 217 (2008), 1889–1934. MR2388081 Zbl 1163.3406110.1016/j.aim.2007.07.011Search in Google Scholar
[13] K. Iwasaki, H. Kimuara, S. Shimemura, M. Yoshida, From Gauss to Painlevé: a modern theory of special functions. Aspects of Math., volume 16, Vieweg, Braunschweig 1991. MR1118604 Zbl 0743.3401410.1007/978-3-322-90163-7Search in Google Scholar
[14] K. Kiso, Local properties of intransitive infinite Lie algebra sheaves. Japan. J. Math. (N.S.) 5 (1979), 101–155. MR1118604 Zbl 0743.3401410.4099/math1924.5.101Search in Google Scholar
[15] E. R. Kolchin, Differential algebra and algebraic groups. Academic Press 1973. MR0568864 Zbl 0264.12102Search in Google Scholar
[16] P. Landesman, Generalized differential Galois theory. Trans. Amer. Math. Soc. 360 (2008), 4441–4495. MR2395180 Zbl 1151.1200410.1090/S0002-9947-08-04586-8Search in Google Scholar
[17] O. Lisovyy, Y. Tykhyy, Algebraic solutions of the sixth Painlevé equation. J. Geom. Phys. 85 (2014), 124–163. MR3253555 Zbl 1307.3413510.1016/j.geomphys.2014.05.010Search in Google Scholar
[18] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry. Cambridge Univ. Press 1987. MR896907 Zbl 0683.5302910.1017/CBO9780511661839Search in Google Scholar
[19] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids. Cambridge Univ. Press 2005. MR2157566 Zbl 1078.5801110.1017/CBO9781107325883Search in Google Scholar
[20] B. Malgrange, Le groupoïde de Galois d’un feuilletage. In: Essays on geometry and related topics, Vol. 1, 2, volume 38 of Monogr. Enseign. Math., 465–501, Enseignement Math., Geneva 2001. MR1929336 Zbl 1033.32020Search in Google Scholar
[21] B. Malgrange, Differential algebraic groups. In: Algebraic approach to differential equations, 292–312, World Sci. Publ., Hackensack, NJ 2010. MR2766096 Zbl 1232.1402810.1142/9789814273244_0007Search in Google Scholar
[22] B. Malgrange, Pseudogroupes de Lie et théorie de Galois différentielle. Preprint 2010, 115 pages https://hal.archives-ouvertes.fr/hal-00469778Search in Google Scholar
[23] T. Morimoto, On the intransitive Lie algebras whose transitive parts are infinite and primitive. J. Math. Soc. Japan 29 (1977), 35–65. MR436233 Zbl 0365.2201810.2969/jmsj/02910035Search in Google Scholar
[24] M. Noumi, Y. Yamada, A new Lax pair for the sixth Painlevé equation associated with
[25] K. Okamoto, Polynomial Hamiltonians associated with Painlevé equations. I. Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 264–268. MR581468 Zbl 0476.3401010.3792/pjaa.56.264Search in Google Scholar
[26] P. Painlevé, Démonstration de l’irréductibilité absolute de l’équation y′′ = 6y2 + x. C. R. Acad. Sci., Paris 135 (1902), 641–647. JFM 33.0347.01Search in Google Scholar
[27] E. Picard, Sur les équations différentielles linéaires et les groupes algébriques de transformations.Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 1 (1887), A1–A15. MR1508053 JFM 19.0308.0110.5802/afst.2Search in Google Scholar
[28] H. Umemura, Differential Galois theory of infinite dimension. Nagoya Math. J. 144 (1996), 59–135.MR1425592 Zbl 0878.1200210.1017/S0027763000006024Search in Google Scholar
[29] E. Vessiot, Sur la théorie de Galois et ses diverses généralisations. Ann. Sci. École Norm. Sup. (3) 21 (1904), 9–85.MR1509036 JFM 35.0351.0310.24033/asens.534Search in Google Scholar
[30] E. Vessiot, Sur une théorie générale de la réductibilité des équations et systèmes d’équations finies ou différentielles. Ann. Sci. École Norm. Sup. (3) 63 (1946), 1–22. MR0020696 Zbl 0061.1670310.24033/asens.930Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Malgrange–Galois groupoid of the Painlevé VI equation with parameters
- Explicit Nikulin configurations on Kummer surfaces
- Irregular surfaces on hypersurfaces of degree 4 with non-degenerate isolated singularities
- Counting isolated points outside the image of a polynomial map
- An inverse approach to hyperspheres of prescribed mean curvature in Euclidean space
- Bridgeland stability conditions on surfaces with curves of negative self-intersection
- Computation of Dressians by dimensional reduction
- A few more extensions of Putinar’s Positivstellensatz to non-compact sets
- On the Jacobian locus in the Prym locus and geodesics
- Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers
Articles in the same Issue
- Frontmatter
- The Malgrange–Galois groupoid of the Painlevé VI equation with parameters
- Explicit Nikulin configurations on Kummer surfaces
- Irregular surfaces on hypersurfaces of degree 4 with non-degenerate isolated singularities
- Counting isolated points outside the image of a polynomial map
- An inverse approach to hyperspheres of prescribed mean curvature in Euclidean space
- Bridgeland stability conditions on surfaces with curves of negative self-intersection
- Computation of Dressians by dimensional reduction
- A few more extensions of Putinar’s Positivstellensatz to non-compact sets
- On the Jacobian locus in the Prym locus and geodesics
- Weierstrass semigroups for maximal curves realizable as Harbater–Katz–Gabber covers