Startseite Eigenvalues of the weighted Laplacian under the extended Ricci flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Eigenvalues of the weighted Laplacian under the extended Ricci flow

  • Abimbola Abolarinwa EMAIL logo
Veröffentlicht/Copyright: 25. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let φ = − ∇φ∇ be a symmetric diffusion operator with an invariant weighted volume measure = eφ on an n-dimensional compact Riemannian manifold (M, g), where g = g(t) solves the extended Ricci flow. We study the evolution and monotonicity of the first nonzero eigenvalue of φ and we obtain several monotone quantities along the extended Ricci flow and its volume preserving version under some technical assumption. We also show that the eigenvalues diverge in a finite time for n ≥ 3. Our results are natural extensions of some known results for Laplace–Beltrami operators under various geometric flows.

  1. Communicated by: F. Duzaar

References

[1] A. Abolarinwa, Evolution and monotonicity of the first eigenvalue of p-Laplacian under the Ricci-harmonic flow. J. Appl. Anal. 21 (2015), 147–160. MR3430912 Zbl 1329.5305210.1515/jaa-2015-0013Suche in Google Scholar

[2] A. Abolarinwa, J. Mao, The first eigenvalue of the p-Laplacian on time dependent Riemannian metrics. Preprint 2016, arXiv:1605.01882 [math.DG]Suche in Google Scholar

[3] D. Bakry, M. Émery, Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, volume 1123 of LectureNotes in Math., 177–206, Springer 1985. MR889476 Zbl 0561.6008010.1007/BFb0075847Suche in Google Scholar

[4] M. Băileşteanu, H. Tran, Heat kernel estimates under the Ricci-harmonic map flow. Proc. Edinb. Math. Soc. (2) 60 (2017), 831–857. MR371568810.1017/S0013091516000523Suche in Google Scholar

[5] X. Cao, Eigenvalues of (Δ+R2) on manifolds with nonnegative curvature operator. Math. Ann. 337 (2007), 435–441. MR2262792 Zbl 1105.5305110.1007/s00208-006-0043-5Suche in Google Scholar

[6] X. Cao, First eigenvalues of geometric operators under the Ricci flow. Proc. Amer. Math. Soc. 136 (2008), 4075–4078. MR2425749 Zbl 1166.5800710.1090/S0002-9939-08-09533-6Suche in Google Scholar

[7] X. Cao, S. Hou, J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354 (2012), 451–463. MR2965250 Zbl 1252.5307510.1007/s00208-011-0740-6Suche in Google Scholar

[8] X. Cheng, D. Zhou, Eigenvalues of the drifted Laplacian on complete metric measure spaces. Commun. Contemp. Math. 19 (2017), 1650001, 17. MR3575913 Zbl 1360.5802210.1142/S0219199716500012Suche in Google Scholar

[9] B. Chow, D. Knopf, The Ricci flow: an introduction, volume 110 of Mathematical Surveys and Monographs. Amer. Math. Soc. 2004. MR2061425 Zbl 1086.5308510.1090/surv/110Suche in Google Scholar

[10] S. Fang, H. Xu, P. Zhu, Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China Math. 58 (2015), 1737–1744. MR3368179 Zbl 1327.5308410.1007/s11425-014-4943-7Suche in Google Scholar

[11] A. Futaki, H. Li, X.-D. Li, On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons. Ann. Global Anal. Geom. 44 (2013), 105–114. MR3073582 Zbl 1273.5801810.1007/s10455-012-9358-5Suche in Google Scholar

[12] A. Grigor’yan, Heat kernel and analysis on manifolds, volume 47 of AMS/IP Studies in Advanced Mathematics. Amer. Math. Soc. 2009. MR2569498 Zbl 1206.58008Suche in Google Scholar

[13] H. Guo, R. Philipowski, A. Thalmaier, Entropy and lowest eigenvalue on evolving manifolds. Pacific J. Math. 264 (2013), 61–81. MR3079761 Zbl 1275.5305810.2140/pjm.2013.264.61Suche in Google Scholar

[14] H. X. Guo, R. Philipowski, A. Thalmaier, On gradient solitons of the Ricci-harmonic flow. Acta Math. Sin. (Engl. Ser.) 31 (2015), 1798–1804. MR3406677 Zbl 1330.5308510.1007/s10114-015-4446-7Suche in Google Scholar

[15] R. S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. 17 (1982), 255–306. MR664497 Zbl 0504.5303410.4310/jdg/1214436922Suche in Google Scholar

[16] G. Huang, Z. Li, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List’s extended Ricci flow. Preprint 2015, arXiv:1511.08529v1 [math.DG]10.1007/s00009-018-1105-0Suche in Google Scholar

[17] J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338 (2007), 927–946. MR2317755 Zbl 1127.5305910.1007/s00208-007-0098-ySuche in Google Scholar

[18] J.-F. Li, Monotonicity formulae under rescaled Ricci flow. Preprint 2007, arXiv:math/07010.5328 [math.DG]Suche in Google Scholar

[19] Y. Li, Eigenvalues and entropies under the harmonic-Ricci flow. Pacific J. Math. 267 (2014), 141–184. MR3163480 Zbl 1312.5308810.2140/pjm.2014.267.141Suche in Google Scholar

[20] Y. Li, Long time existence and bounded scalar curvature in Ricci-harmonic flow. Preprint 2015, arXiv 1510.05788v2 [math.DG]10.1016/j.jde.2018.02.028Suche in Google Scholar

[21] J. Ling, A class of monotone quantities along the Ricci flow. Preprint 2007, arXiv:0710.4291Suche in Google Scholar

[22] B. List, Evolution of an extended Ricci flow system. Comm. Anal. Geom. 16 (2008), 1007–1048. MR2471366 Zbl 1166.5304410.4310/CAG.2008.v16.n5.a5Suche in Google Scholar

[23] L. Ma, Eigenvalue monotonicity for the Ricci–Hamilton flow. Ann. Global Anal. Geom. 29 (2006), 287–292. MR2248073 Zbl 1099.5304610.1007/s10455-006-9018-8Suche in Google Scholar

[24] L. Ma, Eigenvalue estimates and L1 energy on closed manifolds. Acta Math. Sin. (Engl. Ser.) 30 (2014), 1729–1734. MR3255784 Zbl 1304.5801710.1007/s10114-014-1726-6Suche in Google Scholar

[25] R. Müller, Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 101–142. MR2961788 Zbl 1247.5308210.24033/asens.2161Suche in Google Scholar

[26] T. Oliynyk, V. Suneeta, E. Woolgar, A gradient flow for worldsheet nonlinear sigma models. Nuclear Phys. B 739 (2006), 441–458. MR2214659 Zbl 1109.8105810.1016/j.nuclphysb.2006.01.036Suche in Google Scholar

[27] G. Perelman, The entropy formula for the Ricci flow and its geometric application. Preprint 2002, arXiv:0211159v1 [math.DG]Suche in Google Scholar

[28] H. Tadano, Gap theorems for Ricci-harmonic solitons. Ann. Global Anal. Geom. 49 (2016), 165–175. MR3464218 Zbl 1335.5309010.1007/s10455-015-9485-xSuche in Google Scholar

[29] H. Tran, Harnack estimates for Ricci flow on a warped product. J. Geom. Anal. 26 (2016), 1838–1862. MR3511460 Zbl 1343.5306810.1007/s12220-015-9610-xSuche in Google Scholar

[30] M. B. Williams, Results on coupled Ricci and harmonic map flows. Adv. Geom. 15 (2015), 7–26. MR3300708 Zbl 1310.5304310.1515/advgeom-2014-0026Suche in Google Scholar

[31] L. Zhao, Eigenvalues of the Laplacian operator under mean curvature flow. Chinese Ann. Math. Ser. A 30 (2009), 539–544. MR2582093 Zbl 1212.5309510.1007/s11425-008-0130-zSuche in Google Scholar

[32] L. Zhao, The first eigenvalue of p-Laplace operator under powers of the mth mean curvature flow. Results Math. 63 (2013), 937–948. MR3057347 Zbl 1270.5308910.1007/s00025-012-0242-1Suche in Google Scholar

Received: 2016-06-22
Revised: 2017-03-24
Published Online: 2018-10-25
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2018-0022/html?lang=de
Button zum nach oben scrollen