Home Pseudo-embeddings of the (point, k-spaces)-geometry of PG(n, 2) and projective embeddings of DW(2n − 1, 2)
Article
Licensed
Unlicensed Requires Authentication

Pseudo-embeddings of the (point, k-spaces)-geometry of PG(n, 2) and projective embeddings of DW(2n − 1, 2)

  • Bart De Bruyn EMAIL logo
Published/Copyright: March 26, 2018
Become an author with De Gruyter Brill

Abstract

We classify all homogeneous pseudo-embeddings of the point-line geometry defined by the points and k-dimensional subspaces of PG(n, 2), and use this to study the local structure of homogeneous full projective embeddings of the dual polar space DW(2n − 1, 2). Our investigation allows us to distinguish n possible types for such homogeneous embeddings. For each of these n types, we construct a homogeneous full projective embedding of DW(2n − 1, 2).

MSC 2010: 05B25; 51A45; 51A50
  1. Communicated by: A. Pasini

References

[1] E. F. Assmus, Jr., J. D. Key, Designs and their codes, volume 103 of Cambridge Tracts in Mathematics. Cambridge Univ. Press 1992. MR1192126 Zbl 0762.0500110.1017/CBO9781316529836Search in Google Scholar

[2] R. J. Blok, A. E. Brouwer, The geometry far from a residue. In: Groups and geometries (Siena, 1996), 29–38, Birkhäuser 1998. MR1644973 Zbl 0899.5100510.1007/978-3-0348-8819-6_3Search in Google Scholar

[3] R. J. Blok, I. Cardinali, B. De Bruyn, A. Pasini, Polarized and homogeneous embeddings of dual polar spaces. J. Algebraic Combin. 30 (2009), 381–399. MR2545502 Zbl 1204.5100310.1007/s10801-008-0166-8Search in Google Scholar

[4] A. Blokhuis, A. E. Brouwer, The universal embedding dimension of the binary symplectic dual polar space. Discrete Math. 264 (2003), 3–11. MR1972016 Zbl 1018.5100110.1016/S0012-365X(02)00545-9Search in Google Scholar

[5] F. Buekenhout, P. Cameron, Projective and affine geometry over division rings. In: Handbook of incidence geometry, 27–62, North-Holland 1995. MR1360717 Zbl 0822.5100110.1016/B978-044488355-1/50004-9Search in Google Scholar

[6] I. Cardinali, B. De Bruyn, The structure of full polarized embeddings of symplectic and Hermitian dual polar spaces. Adv. Geom. 8 (2008), 111–137. MR2394058 Zbl 1158.5100110.1515/ADVGEOM.2008.008Search in Google Scholar

[7] B. N. Cooperstein, On the generation of some dual polar spaces of symplectic type over GF(2). European J. Combin. 18 (1997), 741–749. MR1478821 Zbl 0890.5100310.1006/eujc.1997.0142Search in Google Scholar

[8] B. N. Cooperstein, On the generation of dual polar spaces of symplectic type over finite fields. J. Combin. Theory Ser. A83 (1998), 221–232. MR1636980 Zbl 0914.5100210.1006/jcta.1998.2875Search in Google Scholar

[9] B. De Bruyn, Isometric full embeddings of DW(2n – 1, q) into DH(2n – 1, q2). Finite Fields Appl. 14 (2008), 188–200. MR2381486 Zbl 1139.5100910.1016/j.ffa.2006.10.002Search in Google Scholar

[10] B. De Bruyn, The structure of the spin-embeddings of dual polar spaces and related geometries. European J. Combin. 29 (2008), 1242–1256. MR2419227 Zbl 1146.5100310.1016/j.ejc.2007.06.001Search in Google Scholar

[11] B. De Bruyn, Two new classes of hyperplanes of the dual polar space DH(2n – 1, 4) not arising from the Grassmann embedding. Linear Algebra Appl. 429 (2008), 2030–2045. MR2446638 Zbl 1160.5100310.1016/j.laa.2008.05.036Search in Google Scholar

[12] B. De Bruyn, On isometric full embeddings of symplectic dual polar spaces into Hermitian dual polar spaces. Linear Algebra Appl. 430 (2009), 2541–2552. MR2508311 Zbl 1166.5100210.1016/j.laa.2008.12.025Search in Google Scholar

[13] B. De Bruyn, On sets of odd type of PG(n, 4) and the universal embedding of the dual polar space DH(2n – 1, 4). Discrete Math. 312 (2012), 554–560. MR2854799 Zbl 1262.5100910.1016/j.disc.2011.04.007Search in Google Scholar

[14] B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of AG(n, 4) and PG(n, 4). Des. Codes Cryptogr. 65 (2012), 127–156. MR2943652 Zbl 1248.5100110.1007/s10623-011-9577-ySearch in Google Scholar

[15] B. De Bruyn, Pseudo-embeddings and pseudo-hyperplanes. Adv. Geom. 13 (2013), 71–95. MR3011535 Zbl 1267.5100210.1515/advgeom-2012-0021Search in Google Scholar

[16] B. De Bruyn, The pseudo-hyperplanes and homogeneous pseudo-embeddings of the generalized quadrangles of order (3, t). Des. Codes Cryptogr. 68 (2013), 259–284. MR3046349 Zbl 1288.5100410.1007/s10623-012-9705-3Search in Google Scholar

[17] N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries. J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (1968), 381–396. MR0243903 Zbl 0172.4320310.32917/hmj/1206138660Search in Google Scholar

[18] J. W. P. Hirschfeld, X. Hubaut, Sets of even type in PG(3, 4), alias the binary (85, 24) projective geometry code. J. Combin. Theory Ser. A29 (1980), 101–112. MR577547 Zbl 0438.0502110.1016/0097-3165(80)90051-5Search in Google Scholar

[19] S. P. Inamdar, N. S. Narasimha Sastry, Codes from Veronese and Segre embeddings and Hamada’s formula. J. Combin. Theory Ser. A96 (2001), 20–30. MR1855786 Zbl 1037.9401010.1006/jcta.2000.3150Search in Google Scholar

[20] P. Li, On the universal embedding of the Sp2n (2) dual polar space. J. Combin. Theory Ser. A94 (2001), 100–117. MR1816249 Zbl 0999.5100210.1006/jcta.2000.3132Search in Google Scholar

[21] P. Li, On the universal embedding of the U2n (2) dual polar space. J. Combin. Theory Ser. A98 (2002), 235–252. MR1899625 Zbl 1003.5100210.1006/jcta.2001.3211Search in Google Scholar

[22] P. McClurg, On the universal embedding of dual polar spaces of type Sp2n (2). J. Combin. Theory Ser. A90 (2000), 104–122. MR1749425 Zbl 1028.5100310.1006/jcta.1999.3020Search in Google Scholar

[23] A. Pasini, Embeddings and expansions. Bull. Belg. Math. Soc. Simon Stevin10 (2003), 585–626. MR2040533 Zbl 1110.5100410.36045/bbms/1070645804Search in Google Scholar

[24] B. Sherman, On sets with only odd secants in geometries over GF(4). J. London Math. Soc. (2) 27 (1983), 539–551. MR697146 Zbl 0535.5101010.1112/jlms/s2-27.3.539Search in Google Scholar

[25] E. Shult, On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin4 (1997), 299–316. MR1443981 Zbl 0923.5101310.36045/bbms/1105731662Search in Google Scholar

[26] M. Tallini Scafati, {k, n}-archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri. I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 40 (1966), 812–818. MR0213953 Zbl 0146.41801Search in Google Scholar

[27] M. Tallini Scafati, Caratterizzazione grafica delle forme hermitiane di un Sr,q. Rend. Mat. e Appl. (5) 26 (1967), 273–303. MR0238173 Zbl 0162.24201Search in Google Scholar

[28] S. Yoshiara, Embeddings of flag-transitive classical locally polar geometries of rank 3. Geom. Dedicata43 (1992), 121–165. MR1180647 Zbl 0760.5101010.1007/BF00147865Search in Google Scholar

Received: 2016-11-03
Published Online: 2018-03-26
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0065/html
Scroll to top button