Startseite Pseudo-metric 2-step nilpotent Lie algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pseudo-metric 2-step nilpotent Lie algebras

  • Christian Autenried , Kenro Furutani , Irina Markina EMAIL logo und Alexander Vasiľev
Veröffentlicht/Copyright: 27. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


Communicated by: P. Eberlein


References

[1] M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology3 (1964), 3–38. MR0167985 Zbl 0146.1900110.1007/978-1-4612-5367-9_1Suche in Google Scholar

[2] C. Autenried, K. Furutani, I. Markina, A. Vasil’ev, Pseudo-metric 2-step nilpotent Lie algebras. 2015. arXiv:1508.02882 [math.RT]Suche in Google Scholar

[3] R. Bott, The stable homotopy of the classical groups. Ann. of Math. (2) 70 (1959), 313–337. MR0110104 Zbl 0129.1560110.2307/1970106Suche in Google Scholar

[4] O. Calin, D.-C. Chang, K. Furutani, C. Iwasaki, Heat kernels for elliptic and sub-elliptic operators. Springer 2011. MR2723056 Zbl 1207.3500210.1007/978-0-8176-4995-1Suche in Google Scholar

[5] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. Birkhäuser 2007. MR2312336 Zbl 1138.53003Suche in Google Scholar

[6] D.-C. Chang, I. Markina, Geometric analysis on quaternion ℍ-type groups. J. Geom. Anal. 16 (2006), 265–294. MR2223803 Zbl 1093.5304210.1007/BF02922116Suche in Google Scholar

[7] Z. Chen, J. A. Wolf, Pseudo-Riemannian weakly symmetric manifolds. Ann. Global Anal. Geom. 41 (2012), 381–390. MR2886205 Zbl 1237.5307110.1007/s10455-011-9291-zSuche in Google Scholar

[8] S.-S. Chern, C. Chevalley, Obituary: Elie Cartan and his mathematical work. Bull. Amer. Math. Soc. 58 (1952), 217–250. MR0046972 Zbl 0046.0030410.1090/S0002-9904-1952-09588-4Suche in Google Scholar

[9] C. Chevalley, Sur certains groupes simples. Tôhoku Math. J. (2) 7 (1955), 14–66. MR0073602 Zbl 0066.0150310.2748/tmj/1178245104Suche in Google Scholar

[10] P. Ciatti, Spherical distributions on harmonic extensions of pseudo-H-type groups. J. Lie Theory7 (1997), 1–28. MR1450743 Zbl 0883.43013Suche in Google Scholar

[11] P. Ciatti, Scalar products on Clifford modules and pseudo-H-type Lie algebras. Ann. Mat. Pura Appl. (4) 178 (2000), 1–31. MR1849376 Zbl 1027.1700810.1007/BF02505885Suche in Google Scholar

[12] P. Clifford, Applications of Grassmann’s Extensive Algebra. Amer. J. Math. 1 (1878), 350–358. MR150518210.2307/2369379Suche in Google Scholar

[13] L. A. Cordero, P. E. Parker, Isometry groups of pseudoriemannian 2-step nilpotent Lie groups. Houston J. Math. 35 (2009), 49–72. MR2491866 Zbl 1170.53048Suche in Google Scholar

[14] M. Cowling, A. H. Dooley, A. Korányi, F. Ricci, H-type groups and Iwasawa decompositions. Adv. Math. 87 (1991), 1–41. MR1102963 Zbl 0761.2201010.1016/0001-8708(91)90060-KSuche in Google Scholar

[15] G. Crandall, J. Dodziuk, Integral structures on H-type Lie algebras. J. Lie Theory12 (2002), 69–79. MR1885037 Zbl 1035.17018Suche in Google Scholar

[16] V. del Barco, G. P. Ovando, Isometric actions on pseudo-Riemannian nilmanifolds. Ann. Global Anal. Geom. 45 (2014), 95–110. MR3165476 Zbl 1295.5308110.1007/s10455-013-9389-6Suche in Google Scholar

[17] P. Eberlein, The moduli space of 2-step nilpotent Lie algebras of type (p, q). In: Explorations in complex and Riemannian geometry, volume 332 of Contemp. Math., 37–72, Amer. Math. Soc. 2003. MR2016090 Zbl 1045.1700310.1090/conm/332/05929Suche in Google Scholar

[18] P. Eberlein, Riemannian submersions and lattices in 2-step nilpotent Lie groups. Comm. Anal. Geom. 11 (2003), 441–488. MR2015754 Zbl 1113.2200910.4310/CAG.2003.v11.n3.a3Suche in Google Scholar

[19] P. Eberlein, Geometry of 2-step nilpotent Lie groups. In: Modern dynamical systems and applications, 67–101, Cambridge Univ. Press 2004. MR2090766 Zbl 1154.22009Suche in Google Scholar

[20] K. Furutani, I. Markina, Complete classification of pseudo H-type Lie agebras: I. Geom. Dedicata190 (2017), 23–51. MR3704811 Zbl 0680846110.1007/s10711-017-0225-1Suche in Google Scholar

[21] K. Furutani, I. Markina, Complete classification of pseudo H-type Lie agebras: II. 2017. arXiv:1703.04948 [math.RT]10.1007/s10711-017-0225-1Suche in Google Scholar

[22] K. Furutani, I. Markina, Existence of lattices on general H-type groups. J. Lie Theory24 (2014), 979–1011. MR3328733 Zbl 1321.17008Suche in Google Scholar

[23] K. Furutani, I. Markina, A. Vasil’ev, Free nilpotent and H-type Lie algebras. Combinatorial and orthogonal designs. J. Pure Appl. Algebra219 (2015), 5467–5492. MR3390034 Zbl 1322.1501110.1016/j.jpaa.2015.05.027Suche in Google Scholar

[24] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 95–153. MR0461589 Zbl 0366.2201010.1007/BF02392235Suche in Google Scholar

[25] M. Godoy Molina, A. Korolko, I. Markina, Sub-semi-Riemannian geometry of general H-type groups. Bull. Sci. Math. 137 (2013), 805–833. MR3102160 Zbl 1304.5307110.1016/j.bulsci.2013.05.005Suche in Google Scholar

[26] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press 1978. MR514561 Zbl 0451.53038Suche in Google Scholar

[27] C. Jang, P. E. Parker, K. Park, Pseudo H-type 2-step nilpotent Lie groups. Houston J. Math. 31 (2005), 765–786. MR2148813 Zbl 1083.53066Suche in Google Scholar

[28] H. Kammeyer, An explicit rational structure for real semisimple Lie algebras. J. Lie Theory24 (2014), 307–319. MR3235892 Zbl 1357.17012Suche in Google Scholar

[29] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc. 258 (1980), 147–153. MR554324 Zbl 0393.3501510.1090/S0002-9947-1980-0554324-XSuche in Google Scholar

[30] A. Kaplan, On the geometry of groups of Heisenberg type. Bull. London Math. Soc. 15 (1983), 35–42. MR686346 Zbl 0521.5304810.1112/blms/15.1.35Suche in Google Scholar

[31] A. Kaplan, A. Tiraboschi, Automorphisms of non-singular nilpotent Lie algebras. J. Lie Theory23 (2013), 1085–1100. MR3185213 Zbl 1362.17019Suche in Google Scholar

[32] A. W. Knapp, Lie groups beyond an introduction. Birkhäuser 2002. MR1920389 Zbl 1075.22501Suche in Google Scholar

[33] A. Korányi, Geometric properties of Heisenberg-type groups. Adv. in Math. 56 (1985), 28–38. MR782541 Zbl 0589.5305310.1016/0001-8708(85)90083-0Suche in Google Scholar

[34] T. Y. Lam, The algebraic theory of quadratic forms. W. A. Benjamin, Reading, Mass. 1973. MR0396410 Zbl 0259.10019Suche in Google Scholar

[35] H. B. Lawson, Jr., M.-L. Michelsohn, Spin geometry. Princeton Univ. Press 1989. MR1031992 Zbl 0688.57001Suche in Google Scholar

[36] A. I. Mal’ cev, On a class of homogeneous spaces. Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32. MR0028842 Zbl 0034.01701Suche in Google Scholar

[37] G. Métivier, Hypoellipticité analytique sur des groupes nilpotents de rang 2. Duke Math. J. 47 (1980), 195–221. MR563376 Zbl 0433.3501510.1215/S0012-7094-80-04715-8Suche in Google Scholar

[38] J. W. Milnor, J. D. Stasheff, Characteristic classes. Princeton Univ. Press 1974. MR0440554 Zbl 0298.5700810.1515/9781400881826Suche in Google Scholar

[39] D. Müller, A. Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie groups. Israel J. Math. 141 (2004), 315–340. MR2063040 Zbl 1054.2200710.1007/BF02772226Suche in Google Scholar

[40] B. O’Neill, Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press 1983. MR719023 Zbl 0531.53051Suche in Google Scholar

[41] G. P. Ovando, Naturally reductive pseudo-Riemannian 2-step nilpotent Lie groups. Houston J. Math. 39 (2013), 147–167. MR3056434 Zbl 1277.53071Suche in Google Scholar

[42] H. M. Reimann, H-type groups and Clifford modules. Adv. Appl. Clifford Algebras11 (2001), 277–287. MR2075359 Zbl 1221.1503310.1007/BF03219139Suche in Google Scholar

[43] H. M. Reimann, Rigidity of H-type groups. Math. Z. 237 (2001), 697–725. MR1854087 Zbl 0982.2201310.1007/PL00004887Suche in Google Scholar

[44] W. Wolfe, Amicable orthogonal designs—existence. Canad. J. Math. 28 (1976), 1006–1020. MR0424596 Zbl 0326.0502110.4153/CJM-1976-099-5Suche in Google Scholar

Received: 2015-8-12
Revised: 2016-1-27
Accepted: 2016-5-3
Published Online: 2018-3-27
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0051/html?lang=de
Button zum nach oben scrollen