Home On lattice coverings by simplices
Article
Licensed
Unlicensed Requires Authentication

On lattice coverings by simplices

  • F. Xue and C. Zong EMAIL logo
Published/Copyright: January 7, 2018
Become an author with De Gruyter Brill

Abstract

By studying the volumes of generalized difference bodies, this paper presents the first nontrivial lower bound for the lattice covering density by n-dimensional simplices.

MSC 2010: 52C17; 52B10; 52C07

Communicated by: E. Bannai


Acknowledgements

For some helpful email discussions, we are grateful to Dr. B. G. Merino and Dr. M. Henze. We are grateful to the referee for his helpful comments and suggestions.

  1. Funding: This work is supported by 973 Program 2013CB834201 and the Chang Jiang Scholars Program of China.

References

[1] S. Artstein-Avidan, K. Einhorn, D. I. Florentin, Y. Ostrover, On Godbersen’s conjecture. Geom. Dedicata178 (2015), 337–350. MR3397498 Zbl 1335.5200510.1007/s10711-015-0060-1Search in Google Scholar

[2] R. P. Bambah, On lattice coverings by spheres. Proc. Nat. Inst. Sci. India20 (1954), 25–52. MR0061137 Zbl 0059.16301Search in Google Scholar

[3] E. S. Barnes, The covering of space by spheres. Canad. J. Math. 8 (1956), 293–304. MR0077576 Zbl 0072.0360310.4153/CJM-1956-033-4Search in Google Scholar

[4] U. Betke, M. Henk, Densest lattice packings of 3-polytopes. Comput. Geom. 16 (2000), 157–186. MR1765181 Zbl 1133.5230710.1016/S0925-7721(00)00007-9Search in Google Scholar

[5] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry. Springer 2005. MR2163782 Zbl 1086.52001Search in Google Scholar

[6] J. H. Conway, S. Torquato, Packing, tiling, and covering with tetrahedra. Proc. Natl. Acad. Sci. USA103 (2006), 10612–10617. MR2242647 Zbl 1160.5230110.1073/pnas.0601389103Search in Google Scholar PubMed PubMed Central

[7] R. Dougherty, V. Faber, The degree-diameter problem for several varieties of Cayley graphs. I. The abelian case. SIAM J. Discrete Math. 17 (2004), 478–519. MR2050686 Zbl 1056.0504610.1137/S0895480100372899Search in Google Scholar

[8] I. Fáry, Sur la densité des réseaux de domaines convexes. Bull. Soc. Math. France78 (1950), 152–161. MR0039288 Zbl 0039.1820210.24033/bsmf.1413Search in Google Scholar

[9] E. S. Fedorov, Elements of the study of figures (Russian). Zap. Mineral. Imper. S. PetersburgskogoObšč. (2) 21 (1885), 1–297. Also Izdat. Akad. Nauk SSSR, Moscow 1953. MR0062061Search in Google Scholar

[10] L. Fejes, Eine Bemerkung über die Bedeckung der Ebene durch Eibereiche mit Mittelpunkt. ActaUniv. Szeged. Sect. Sci. Math. 11 (1946), 93–95. MR0017559 Zbl 0063.01334Search in Google Scholar

[11] G. Fejes Tóth, W. Kuperberg, Packing and covering with convex sets. In: Handbook of convex geometry, Vol. A, B, 799–860, North-Holland 1993. MR1242997 Zbl 0789.5201810.1016/B978-0-444-89597-4.50007-XSearch in Google Scholar

[12] L. Fejes Tóth, Some packing and covering theorems. Acta Sci. Math. Szeged12 (1950), 62–67. MR0038086 Zbl 0037.22102Search in Google Scholar

[13] L. Few, Covering space by spheres. Mathematika3 (1956), 136–139. MR0083525 Zbl 0072.2730210.1112/S0025579300001819Search in Google Scholar

[14] C. M. Fiduccia, R. W. Forcade, J. S. Zito, Geometry and diameter bounds of directed Cayley graphs of abelian groups. SIAM J. Discrete Math. 11 (1998), 157–167. MR1612881 Zbl 0916.0503310.1137/S0895480195286456Search in Google Scholar

[15] R. Forcade, J. Lamoreaux, Lattice-simplex coverings and the 84-shape. SIAM J. Discrete Math. 13 (2000), 194–201. MR1760337 Zbl 0941.0502210.1137/S0895480198349622Search in Google Scholar

[16] C. Godbersen, Der Satz vom Vektorbereich in Räumen beliebiger Dimensionen. Dissertation, Göttingen, 1938.Search in Google Scholar

[17] P. M. Gruber, C. G. Lekkerkerker, Geometry of numbers, volume 37 of North-Holland Mathematical Library. North-Holland 1987. MR893813 Zbl 0611.10017Search in Google Scholar

[18] H. Hadwiger, Überdeckung des Raumes durch translationsgleiche Punktmengen und Nachbarnzahl. Monatsh. Math. 73 (1969), 213–217. MR0254745 Zbl 0182.5570210.1007/BF01300537Search in Google Scholar

[19] A. Hajnal, E. Makai, Research problems. Period. Math. Hungar. 5 (1974), 353–354. MR155358710.1007/BF02018191Search in Google Scholar

[20] D. Hilbert, Mathematische Probleme. Arch. Math. Phys. 3 (1901), 44–63, 213–237. English translation: Bull. Amer. Math. Soc. 37 (2000), 407–436. MR1779412 Zbl 32.0084.05Search in Google Scholar

[21] J. Januszewski, Covering the plane with translates of a triangle. Discrete Comput. Geom. 43 (2010), 167–178. MR2575324 Zbl 1189.5201910.1007/s00454-009-9203-1Search in Google Scholar

[22] R. Kershner, The number of circles covering a set. Amer. J. Math. 61 (1939), 665–671. MR0000043 Zbl 0021.11401 JFM 65.0197.0310.2307/2371320Search in Google Scholar

[23] J. C. Lagarias, C. Zong, Mysteries in packing regular tetrahedra. Notices Amer. Math. Soc. 59 (2012), 1540–1549. MR3027108 Zbl 1284.5201810.1090/noti918Search in Google Scholar

[24] H. Minkowski, Dichteste gitterförmige Lagerung kongruenter Körper. Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1904), 311–355. Zbl 35.0508.02Search in Google Scholar

[25] C. A. Rogers, Packing and covering. Cambridge Univ. Press 1964. MR0172183 Zbl 0176.51401Search in Google Scholar

[26] C. A. Rogers, G. C. Shephard, The difference body of a convex body. Arch. Math. (Basel) 8 (1957), 220–233. MR0092172 Zbl 0082.1570310.1007/BF01899997Search in Google Scholar

[27] W. M. Schmidt, Zur Lagerung kongruenter Körper im Raum. Monatsh. Math. 65 (1961), 154–158. MR0126215 Zbl 0111.3490510.1007/BF01307024Search in Google Scholar

[28] R. Schneider, Convex bodies: the Brunn–Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press 1993. MR1216521 Zbl 0798.5200110.1017/CBO9780511526282Search in Google Scholar

[29] C. Zong, Sphere packings. Springer 1999. MR1707318 Zbl 0935.52016Search in Google Scholar

Received: 2016-3-6
Published Online: 2018-1-7
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2017-0049/html
Scroll to top button