Abstract
We study left-invariant almost paracontact metric structures on arbitrary three-dimensional Lorentzian Lie groups. We obtain a complete classification and description under a natural assumption, which includes relevant classes as normal and almost para-cosymplectic structures, and we investigate geometric properties of these structures.
References
[1] D. V. Alekseevsky, C. Medori, A. Tomassini, Maximally homogeneous para-CR manifolds. Ann. Global Anal. Geom. 30 (2006), 1-27. MR2249610 Zbl 1109.5303010.1007/s10455-005-9009-1Search in Google Scholar
[2] G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geom. Dedicata127 (2007), 99-119. MR2338519 Zbl 1126.5304410.1007/s10711-007-9163-7Search in Google Scholar
[3] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279-1291. MR2287304 Zbl 1112.5305110.1016/j.geomphys.2006.10.005Search in Google Scholar
[4] G. Calvaruso, Homogeneous paracontact metric three-manifolds. Illinois J. Math. 55 (2011), 697-718 (2012). MR3020703 Zbl 1273.5302010.1215/ijm/1359762409Search in Google Scholar
[5] G. Calvaruso, V. Martín-Molina, Paracontact metric structures on the unit tangent sphere bundle. Ann. Mat. Pura Appl. (4) 194 (2015), 1359-1380. MR3383943 Zbl 1328.5303510.1007/s10231-014-0424-4Search in Google Scholar
[6] G. Calvaruso, A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys. 98 (2015), 1-12. MR3414937 Zbl 1353.5303110.1016/j.geomphys.2015.07.021Search in Google Scholar
[7] G. Calvaruso, D. Perrone, Geometry of H-paracontact metric manifolds. Publ. Math. Debrecen86 (2015), 325-346. MR334609010.5486/PMD.2015.6078Search in Google Scholar
[8] B. Cappelletti Montano, Bi-Legendrian structures and paracontact geometry. Int. J. Geom. Methods Mod. Phys. 6 (2009), 487-504. MR2532743 Zbl 1170.5301510.1142/S0219887809003631Search in Google Scholar
[9] B. Cappelletti Montano, I. Küpeli Erken, C. Murathan, Nullity conditions in paracontact geometry. Differential Geom. Appl. 30 (2012), 665-693. MR2996861 Zbl 1257.5304610.1016/j.difgeo.2012.09.006Search in Google Scholar
[10] M. Chaichi, E. García-Río, M. E. Vázquez-Abal, Three-dimensional Lorentz manifolds admitting a parallel null vector field. J. Phys. A38 (2005), 841-850. MR2125237 Zbl 1068.5304910.1088/0305-4470/38/4/005Search in Google Scholar
[11] P. Dacko, Z. Olszak, On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys. 57 (2007), 561-570. MR2271205 Zbl 1123.5301510.1016/j.geomphys.2006.05.001Search in Google Scholar
[12] S. Dragomir, G. Tomassini, Differential geometry and analysis on CR manifolds. Birkhäuser 2006. MR2214654 Zbl 1099.32008Search in Google Scholar
[13] C. D. Hill, P. Nurowski, Differential equations and para-CR structures. Boll. Unione Mat. Ital. (9) 3 (2010), 25-91. MR2605912 Zbl 1206.58001Search in Google Scholar
[14] S. Ivanov, D. Vassilev, S. Zamkovoy, Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata144 (2010), 79-100. MR2580419 Zbl 1195.5304810.1007/s10711-009-9388-8Search in Google Scholar
[15] S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge structures on manifolds. Nagoya Math. J. 99 (1985), 173-187. MR805088 Zbl 0576.5302410.1017/S0027763000021565Search in Google Scholar
[16] J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances in Math. 21 (1976), 293-329. MR0425012 Zbl 0341.5303010.1016/S0001-8708(76)80002-3Search in Google Scholar
[17] A. Perrone, Some results on almost paracontact metric manifolds, Mediterr. J. of Math., 13 (2016), 3311-3326. MR3554310 Zbl 1354.5304410.1007/s00009-016-0687-7Search in Google Scholar
[18] S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. J. Geom. Phys. 9 (1992), 295-302. MR1171140 Zbl 0752.5303610.1016/0393-0440(92)90033-WSearch in Google Scholar
[19] J. Wełyczko, On Legendre curves in 3-dimensional normal almost paracontact metric manifolds. Results Math. 54 (2009), 377-387. MR2534454 Zbl 1180.5308010.1007/s00025-009-0364-2Search in Google Scholar
[20] J. Wełyczko, Para-CR structures on almost paracontact metric manifolds. J. Appl. Anal. 20 (2014), 105-117. MR3284717 Zbl 1310.5302710.1515/jaa-2014-0012Search in Google Scholar
[21] J. Wełyczko, Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math. 11 (2014), 965-978. MR3232573 Zbl 1300.5302110.1007/s00009-013-0361-2Search in Google Scholar
[22] S. Zamkovoy, Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36 (2009), 37-60. MR2520029 Zbl 1177.5303110.1007/s10455-008-9147-3Search in Google Scholar
[23] S. Zamkovoy, ParaSasakian manifolds with constant paraholomorphic sectional curvature. arXiv 0812.1676 [math.DG]Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes