Abstract
A hemisystem on the Hermitian surface ℋ(3, q2), q ≥ 7 odd, admitting a subgroup of PΩ-(4, q) of order q2(q +1) is constructed. Also, a new family of Cameron-Liebler line classes of PG(3, q), q ≥ 5 odd, with parameter (q2 + 1)/2 is provided.
References
[1] J. Bamberg, F. De Clerck, N. Durante, A hemisystem of a nonclassical generalised quadrangle. Des. Codes Cryptogr. 51 (2009), 157-165. MR2480696 Zbl 1247.0504510.1007/s10623-008-9251-1Search in Google Scholar
[2] J. Bamberg, M. Giudici, G. F. Royle, Every flock generalized quadrangle has a hemisystem. Bull. Lond. Math. Soc. 42 (2010), 795-810. MR2721741 Zbl 1227.0510210.1112/blms/bdq031Search in Google Scholar
[3] J. Bamberg, M. Giudici, G. F. Royle, Hemisystems of small flock generalized quadrangles. Des. Codes Cryptogr. 67 (2013), 137-157. MR3010454 Zbl 1258.0501710.1007/s10623-011-9591-0Search in Google Scholar
[4] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A114 (2007), 1293-1314. MR2353124 Zbl 1124.5100310.1016/j.jcta.2007.01.009Search in Google Scholar
[5] A. A. Bruen, K. Drudge, The construction of Cameron-Liebler line classes in PG(3, q). Finite Fields Appl. 5 (1999), 35-45. MR1667101 Zbl 0927.5101210.1006/ffta.1998.0239Search in Google Scholar
[6] A. A. Bruen, J. W. P. Hirschfeld, Applications of line geometry over finite fields. II. The Hermitian surface. Geom. Dedicata7 (1978), 333-353. MR0500486 Zbl 0394.5100610.1007/BF00151531Search in Google Scholar
[7] R. Calderbank, W. M. Kantor, The geometry of two-weight codes. Bull. London Math. Soc. 18 (1986), 97-122. MR818812 Zbl 0582.9401910.1112/blms/18.2.97Search in Google Scholar
[8] P. J. Cameron, Partial quadrangles. Quart. J. Math. Oxford Ser. (2) 26 (1975), 61-73. MR0366702 Zbl 0301.0500910.1093/qmath/26.1.61Search in Google Scholar
[9] P. J. Cameron, P. Delsarte, J.-M. Goethals, Hemisystems, orthogonal configurations, and dissipative conference matrices. Philips J. Res. 34 (1979), 147-162. MR546259 Zbl 0447.05020Search in Google Scholar
[10] P. J. Cameron, R. A. Liebler, Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46 (1982), 91-102. MR664699 Zbl 0504.0501510.1016/0024-3795(82)90029-5Search in Google Scholar
[11] P. Cara, S. Rottey, G. Van de Voorde, The isomorphism problem for linear representations and their graphs. Adv. Geom. 14 (2014), 353-367. MR3263431 Zbl 1295.5100310.1515/advgeom-2013-0040Search in Google Scholar
[12] A. Cossidente, G. L. Ebert, G. Marino, A. Siciliano, Shult sets and translation ovoids of the Hermitian surface. Adv. Geom. 6 (2006), 523-542. MR2267036 Zbl 1136.5100610.1515/ADVGEOM.2006.032Search in Google Scholar
[13] A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface. J. London Math. Soc. (2) 72 (2005), 731-741. MR2190334 Zbl 1085.5101310.1112/S0024610705006964Search in Google Scholar
[14] A. Cossidente, T. Penttila, A new hemisystem on ℋ(3, 49). Ars Combin. 119 (2015), 257-262. MR3329635 Zbl 1349.05045Search in Google Scholar
[15] J. De Beule, J. Demeyer, K. Metsch, M. Rodgers, Anew family of tight sets in 𝒬+(5, q). Des. Codes Cryptogr. 78 (2016), 655-678. MR3459217 Zbl 1336.5100210.1007/s10623-014-0023-9Search in Google Scholar
[16] K. W. Drudge, Extremal sets in projective and polar spaces. PhD thesis, The University of Western Ontario, 1998.Search in Google Scholar
[17] T. Feng, K. Momihara, Q. Xiang, Cameron-Liebler line classes with parameter
[18] A. L. Gavrilyuk, K. Metsch, A modular equality for Cameron-Liebler line classes. J. Combin. Theory Ser. A127 (2014), 224-242. MR3252662 Zbl 1302.5100810.1016/j.jcta.2014.06.004Search in Google Scholar
[19] P. Govaerts, T. Penttila, Cameron-Liebler line classes in PG(3, 4). Bull. Belg. Math. Soc. Simon Stevin12 (2005), 793-804. MR2241344 Zbl 1142.5100510.36045/bbms/1136902616Search in Google Scholar
[20] W. H. Haemers, D. G. Higman, Strongly regular graphs with strongly regular decomposition. Linear Algebra Appl. 114/115 (1989), 379-398. MR986885 Zbl 0719.0506910.1016/0024-3795(89)90471-0Search in Google Scholar
[21] J. W. P. Hirschfeld, Finite projective spaces of three dimensions. Oxford Univ. Press 1985. MR840877 Zbl 0574.51001Search in Google Scholar
[22] K. Metsch, The non-existence of Cameron-Liebler line classes with parameter 2 < x ≤ q. Bull. Lond. Math. Soc. 42 (2010), 991-996. MR2740019 Zbl 1213.5100810.1112/blms/bdq057Search in Google Scholar
[23] S. E. Payne, J. A. Thas, Finite generalized quadrangles. Pitman 1984. MR767454 Zbl 0551.0502710.4171/066Search in Google Scholar
[24] T. Penttila, Cameron-Liebler line classes in PG(3, q). Geom. Dedicata37 (1991), 245-252. MR1094687 Zbl 0724.5101710.1007/BF00181401Search in Google Scholar
[25] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. (4) 70 (1965), 1-201. MR0213949 Zbl 0146.1670310.1007/BF02410088Search in Google Scholar
[26] J. A. Thas, Ovoids and spreads of finite classical polar spaces. Geom. Dedicata10 (1981), 135-143. MR608135 Zbl 0458.5101010.1007/BF01447417Search in Google Scholar
[27] J.A.Thas, Projective geometry over a finite field. In: Handbook of incidence geometry, 295-347, North-Holland 1995. MR1360722 Zbl 0822.5100710.1016/B978-044488355-1/50009-8Search in Google Scholar
[28] E. R. van Dam, W. J. Martin, M. Muzychuk, Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems. J. Combin. Theory Ser. A120 (2013), 1401-1439. MR3092674 Zbl 1314.0523610.1016/j.jcta.2013.04.004Search in Google Scholar
© 2017 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes
Articles in the same Issue
- Frontmatter
- Classification of 3-dimensional left-invariant almost paracontact metric structures
- On the topology of the spaces of curvature constrained plane curves
- On deformations of parallel G2 structures and almost contact metric structures
- A flag representation of projection functions
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Intriguing sets of quadrics in PG(5, q)
- Successive radii and ball operators in generalized Minkowski spaces
- Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms
- The Archimedean projection property
- Kernels of numerical pushforwards
- Modified classical flat Minkowski planes