Startseite A short geometric proof that Hausdorff limits are definable in any o-minimal structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A short geometric proof that Hausdorff limits are definable in any o-minimal structure

  • Beata Kocel-Cynk EMAIL logo , Wiesław Pawłucki EMAIL logo und Anna Valette EMAIL logo
Veröffentlicht/Copyright: 17. Januar 2014
Veröffentlichen auch Sie bei De Gruyter Brill
Advances in Geometry
Aus der Zeitschrift Band 14 Heft 1

Abstract. The aim of this note is to give yet another proof of the following theorem: given an arbitrary o-minimal structure on the ordered field of real numbers ℝ and any definable family A of definable nonempty compact subsets of ℝn, then the closure of A in the sense of the Hausdorff metric (or, equivalently, in the Vietoris topology) is a definable family. In particular, any limit in the sense of the Hausdorff metric of a convergent sequence of subsets of a definable family is definable in the same o-minimal structure. The original proofs by Bröcker [1], Marker and Steinhorn [7], Pillay [11] (see also van den Dries [15]) were based on model theory. Lion and Speissegger [6] gave a geometric proof of the theorem. Our proof below is based on the idea of Lipschitz cell decompositions.

Published Online: 2014-01-17
Published in Print: 2014-01

© 2014 by Walter de Gruyter GmbH & Co.

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/advgeom-2013-0028/html
Button zum nach oben scrollen