Startseite The fractional Hopf differential and a weak formulation of stationarity for the half Dirichlet energy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The fractional Hopf differential and a weak formulation of stationarity for the half Dirichlet energy

  • Filippo Gaia ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. November 2024

Abstract

We obtain a weak formulation of the stationarity condition for the half Dirichlet energy, which can be expressed in terms of a fractional quantity, related to the trace of the Hopf differential of the harmonic extension of the original map. As an application we show that conformal harmonic maps from the disc are precisely the harmonic extensions of stationary points of the half Dirichlet energy on the circle. We also derive a Noether theorem and a Pohozaev identity for stationary points of the half Dirichlet energy.

MSC 2020: 58E20; 35R11; 35J20

Communicated by Yannick Sire


A Commutator estimates and fractional divergences

In this appendix we will derive some estimate for commutators, which will allow us to extend the definition of the operator D s ( a , b ) in a distributional sense to a wide family of maps a , b . We will then see how the operator D s ( a , b ) is related to the fractional divergence operator introduced in [14].

We will make use of the following function space.

Definition A.1.

Let 𝔸 ( 𝕊 1 , k ) be the space of all the elements u in 𝒟 ( 𝕊 1 , k ) such that

u 𝔸 := k | u ^ ( k ) | < .

𝔸 ( 𝕊 1 ) is called Wiener algebra.

Remark 3.

Recall that for any s > 1 2 there is a continuous embedding H s ( 𝕊 1 , k ) 𝔸 ( 𝕊 1 , k ) . Indeed, for any u H s ( 𝕊 1 , k ) ,

(A.1) k k 0 | u ^ ( k ) | ( k k 0 | u ^ ( k ) | 2 | k | 2 s ) 1 2 ( k k 0 | k | - 2 s ) 1 2

by the Cauchy–Schwarz inequality. As s > 1 2 , the second factor is finite. Moreover, | u ^ ( 0 ) | | u H s . In particular, all the results of this section have a slightly weaker formulation in terms of Sobolev spaces only.

Lemma A.1.

Let s ( 0 , 1 2 ) . For any a , b , φ C ( S 1 , R k ) there holds

| D s ( a , b ) φ | C φ 𝔸 a H 2 s - 1 b L 2 .

Proof.

We define the action of the commutator [ ( - Δ ) s , a ] on φ as follows:

[ ( - Δ ) s , a ] φ = ( - Δ ) s ( a φ ) - a ( - Δ ) s φ .

To prove the lemma, it will be enough to show the following estimate:

[ ( - Δ ) s , a ] φ L 2 C φ 𝔸 a H 2 s - 1 .

For any n we have

( [ ( - Δ ) s , a ] φ ) ( n ) = | n | 2 s a φ ^ ( n ) - k | n - k | 2 s a ^ ( n - k ) φ ^ ( k )
= | n | 2 s k a ^ ( n - k ) φ ^ ( k ) - k | n - k | 2 s a ^ ( n - k ) φ ^ ( k )
= k ( | n | 2 s - | n - k | 2 s ) φ ^ ( k ) a ^ ( n - k ) .

By Plancherel’s identity,

[ ( - Δ ) s , a ] φ L 2 2 = 4 π 2 n | k ( | n | 2 s - | n - k | 2 s ) φ ^ ( k ) a ^ ( n - k ) | 2 .

Observe that if | k | 2 | n | > 0 , there holds | k | 2 | k + n | ; thus

| | k + n | 2 s - | k | 2 s | s | k | | n + k | | k | | n + k | r 2 s - 1 𝑑 r s | n | ( | k | 2 ) 2 s - 1 3 1 - 2 s s | n | | k - n | 2 s - 1 .

Therefore, Young’s inequality yields

(A.2)

k ( 0 < | n | | k | 2 | φ ^ ( n ) a ^ ( k - n ) | | | k + n | 2 s - | k | 2 s | ) 2 3 2 ( 1 - 2 s ) s 2 k ( 0 < | n | | k | 2 | φ ^ ( n ) n | | a ^ ( k - n ) | | k - n | 2 s - 1 ) 2
3 2 ( 1 - 2 s ) s 2 ( n | φ ^ ( n ) n | ) 2 ( k | a ^ ( k ) | 2 | k | 4 s - 2 )
= 3 2 ( 1 - 2 s ) s 2 φ 𝔸 2 [ a ] H ˙ 2 s - 1 2 .

On the other hand, we always have

| | n + k | 2 s - | k | 2 s | | n | 2 s ,

and if | k | < 2 | n | , then | k - n | 3 | n | . Therefore,

(A.3)

k ( | k | 2 < | n | | φ ^ ( n ) a ^ ( k - n ) | | | k + n | 2 s - | k | 2 s | ) 2 k ( | k | 2 < | n | | φ ^ ( n ) | | n | 2 s | k - n | 1 - 2 s | a ^ ( k - n ) | | k - n | 2 s - 1 ) 2
3 2 ( 1 - 2 s ) k ( n | φ ^ ( n ) | | n | | a ^ ( k - n ) | | | k - n | 2 s - 1 ) 2
3 2 ( 1 - 2 s ) ( n | φ ^ ( n ) n | ) 2 ( k | a ^ ( k ) | 2 | k | 4 s - 2 )
= 3 2 ( 1 - 2 s ) φ 𝔸 2 [ a ] H ˙ 2 s - 1 2 ,

where the second-last steps follow again from Young’s inequality. Therefore, combining (A.2) and (A.3), we obtain

(A.4) [ ( - Δ ) s , a ] φ L 2 2 4 π 2 3 2 ( 1 - 2 s ) ( 1 + s 2 ) φ 𝔸 2 [ a ] H ˙ 2 s - 1 2

This concludes the proof of the lemma. ∎

Lemma A.2.

Let a , b , φ C ( S 1 , R k ) . Then

(A.5) | D 1 2 ( a , b ) φ | C ( - Δ ) 3 4 φ 𝔸 a H - 1 2 b H 1 2 .

Proof.

Proceeding as in the proof of Lemma A.1, we see that it is enough to show the following estimate:

(A.6) [ ( - Δ ) 1 2 , a ] φ H - 1 2 C ( - Δ ) 3 4 φ 𝔸 a H - 1 2 .

In term of Fourier coefficients, we would like to obtain a bound for

(A.7) [ ( - Δ ) 1 2 , a ] φ H - 1 2 2 = n | ( [ ( - Δ ) 1 2 , a ] φ ) ( n ) | 2 ( 1 + | n | 2 ) - 1 2
= n | k ( | n | - | n - k | ) ( 1 + | n | 2 ) - 1 4 φ ^ ( k ) a ^ ( n - k ) | 2 .

Observe that if | n | 2 | k | , then | n - k | 3 2 | n | and therefore

| n | - | n - k | ( 1 + | n | 2 ) 1 4 ( 3 2 ) 1 2 | k | ( 1 + | n - k | 2 ) 1 4 .

Thus, by Young’s inequality,

(A.8)

n | | k | | n | 2 φ ^ ( k ) a ^ ( n - k ) ( | n | - | n - k | ) ( 1 + | n | 2 ) - 1 4 | 2 3 2 n ( k | φ ^ ( k ) | | k | | a ^ ( n - k ) | | ( 1 + | n - k | 2 ) - 1 4 | ) 2
3 2 ( k | φ ^ ( k ) k | ) 2 k | a ^ ( k ) | 2 ( 1 + | k | 2 ) - 1 2
= 3 2 φ 𝔸 2 a H - 1 2 2 .

On the other hand, if | n | < 2 | k | , then | n - k | 3 | k | and therefore

| n | - | n - k | ( 1 + | n | 2 ) 1 4 | k | ( 1 + | n - k | 2 ) 1 4 ( 1 + | n - k | 2 ) 1 4 2 | k | 3 2 ( 1 + | n - k | 2 ) 1 4 .

Thus, by Young’s inequality,

(A.9)

n | | n | < 2 | k | φ ^ ( k ) a ^ ( n - k ) ( | n | - | n - k | ) ( 1 + | n | 2 ) - 1 4 | 2 4 n ( | n | < 2 | k | | φ ^ ( k ) | | k | 3 2 | a ^ ( n - k ) | | ( 1 + | n - k | 2 ) 1 4 ) 2
4 ( k | φ ^ ( k ) | | k | 3 2 ) 2 k | a ^ ( k ) | 2 ( 1 + | k | 2 ) - 1 2
= 4 ( - Δ ) 3 4 φ 𝔸 2 a H - 1 2 2 = 4 ( - Δ ) 3 4 φ 𝔸 2 w H - 1 2 .

Combining (A.8) and (A.9), we obtain estimate (A.6). ∎

Next we discuss the link of the operator D s with the fractional divergence operator introduced in [14]. For s ( 0 , 1 2 ) denote K s the kernel of the s-fractional Laplacian, so that for any φ C ( 𝕊 1 ) ,

( - Δ ) s φ ( x ) = 𝕊 1 ( φ ( x ) - φ ( y ) ) K s ( x - y ) 𝑑 y .

For a description of K s , see [18]. Following [14], for any F : 𝕊 1 × 𝕊 1 we define the s-fractional divergence of F to be the distribution

div s F [ φ ] = 𝕊 1 𝕊 1 F ( x , y ) ( φ ( x ) - φ ( y ) ) K s 2 ( x - y ) 𝑑 x 𝑑 y

whenever the integral is well defined.

Lemma A.3.

Let s ( 0 , 1 2 ) . Let a , b , φ C ( S 1 ) . Then

𝕊 1 D s ( a , b ) φ = 2 div 2 s ( a ( x ) b ( y ) ) [ φ ] .

Proof.

We compute

𝕊 1 D s ( a , b ) φ = 𝕊 1 𝕊 1 ( ( a ( x ) - a ( y ) ) b ( x ) - a ( x ) ( b ( x ) - b ( y ) ) ) φ ( x ) K s ( x - y ) 𝑑 x 𝑑 y
= 1 2 𝕊 1 𝕊 1 ( ( a ( x ) - a ( y ) ) b ( x ) - a ( x ) ( b ( x ) - b ( y ) ) ) φ ( x ) K ( x - y ) d x d y
+ 1 2 𝕊 1 𝕊 1 ( ( a ( y ) - a ( x ) ) b ( y ) - a ( y ) ( b ( y ) - b ( x ) ) ) φ ( y ) K s ( x - y ) 𝑑 x 𝑑 y
= 𝕊 1 𝕊 1 ( a ( x ) b ( y ) - a ( y ) b ( x ) ) ( φ ( x ) - φ ( y ) ) K s ( x - y ) 𝑑 x 𝑑 y
= 2 𝕊 1 𝕊 1 a ( x ) b ( y ) ( φ ( x ) - φ ( y ) ) K s ( x - y ) 𝑑 x 𝑑 y
= 2 div 2 s ( a ( x ) b ( y ) ) [ φ ] ,

where in the second step we interchanged the variables x and y. ∎

Acknowledgements

The present work is based on some chapters of the author’s Master thesis [9]. The author would like to thank Professor Tristan Rivière, Professor Xavier Ros-Oton and Alessandro Pigati for their guidance and their support.

References

[1] X. Cabré and A. Mas, Periodic solutions to integro-differential equations: Hamiltonian structure, in preparation. Suche in Google Scholar

[2] F. Da Lio, Compactness and bubble analysis for 1/2-harmonic maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), no. 1, 201–224. 10.1016/j.anihpc.2013.11.003Suche in Google Scholar

[3] F. Da Lio, Some remarks on Pohozaev-type identities, Bruno Pini Mathematical Analysis Seminar 2018, Bruno Pini Math. Anal. Semin. 9, University of Bologna, Bologna (2018), 115–136. Suche in Google Scholar

[4] F. Da Lio, P. Laurain and T. Rivière, A Pohozaev-type formula and quantization of horizontal half-harmonic maps, preprint (2016), https://arxiv.org/abs/1706.05504. Suche in Google Scholar

[5] F. Da Lio, L. Martinazzi and T. Rivière, Blow-up analysis of a nonlocal Liouville-type equation, Anal. PDE 8 (2015), no. 7, 1757–1805. 10.2140/apde.2015.8.1757Suche in Google Scholar

[6] F. Da Lio and A. Pigati, Free boundary minimal surfaces: A nonlocal approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 2, 437–489. 10.2422/2036-2145.201801_008Suche in Google Scholar

[7] F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math. 227 (2011), no. 3, 1300–1348. 10.1016/j.aim.2011.03.011Suche in Google Scholar

[8] F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1 2 -harmonic maps into spheres, Anal. PDE 4 (2011), no. 1, 149–190. 10.2140/apde.2011.4.149Suche in Google Scholar

[9] F. Gaia, Noether theorems for lagrangians involving fractional Laplacians, preprint (2020), https://arxiv.org/abs/2004.02917. Suche in Google Scholar

[10] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596. Suche in Google Scholar

[11] F. Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), no. 2, 203–218. 10.1007/BF02568371Suche in Google Scholar

[12] F. Hélein, Harmonic Maps, Conservation Laws and Moving Frames, 2nd ed., Cambridge Tracts in Math. 150, Cambridge University, Cambridge, 2002. 10.1017/CBO9780511543036Suche in Google Scholar

[13] P. Laurain and T. Rivière, Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications, Anal. PDE 7 (2014), no. 1, 1–41. 10.2140/apde.2014.7.1Suche in Google Scholar

[14] K. Mazowiecka and A. Schikorra, Fractional div-curl quantities and applications to nonlocal geometric equations, J. Funct. Anal. 275 (2018), no. 1, 1–44. 10.1016/j.jfa.2018.03.016Suche in Google Scholar

[15] V. Millot and Y. Sire, On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal. 215 (2015), no. 1, 125–210. 10.1007/s00205-014-0776-3Suche in Google Scholar

[16] E. Noether, Invariante Variationsprobleme, Gött. Nachr. 1918 (1918), 235–257. 10.25291/VR/1918-VLR-257Suche in Google Scholar

[17] T. Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), no. 2, 197–226. 10.1007/BF02393305Suche in Google Scholar

[18] L. Roncal and P. R. Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math. 18 (2016), no. 3, Article ID 1550033. 10.1142/S0219199715500339Suche in Google Scholar

[19] X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 587–628. 10.1007/s00205-014-0740-2Suche in Google Scholar

[20] R. M. Schoen, Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential Equations, Math. Sci. Res. Inst. Publ. 2, Springer, New York (1984), 321–358. 10.1007/978-1-4612-1110-5_17Suche in Google Scholar

Received: 2024-03-15
Accepted: 2024-09-24
Published Online: 2024-11-20
Published in Print: 2025-04-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/acv-2024-0031/html
Button zum nach oben scrollen