Home Existence of distributional solutions to some quasilinear degenerate elliptic systems with low integrability of the datum
Article
Licensed
Unlicensed Requires Authentication

Existence of distributional solutions to some quasilinear degenerate elliptic systems with low integrability of the datum

  • Patrizia Di Gironimo ORCID logo , Salvatore Leonardi ORCID logo EMAIL logo , Francesco Leonetti ORCID logo and Marta Macrì ORCID logo
Published/Copyright: February 1, 2025

Abstract

We prove the existence of a distributional solution to a quasilinear system of degenerate equations when the datum has low integrability. The main assumption asks the off-diagonal coefficients to have support in a crossed staircase set.

MSC 2020: 35J57; 35J62

Award Identifier / Grant number: E55F22000270001

Funding source: European Commission

Award Identifier / Grant number: 2022ZXZTN2

Funding statement: Salvatore Leonardi has been supported by GNAMPA project codice CUP_E5522000270001, by project EEEP&DLaD, Piano della Ricerca di Ateneo 2020-2022-PIACERI, by Piano della Ricerca 2024/26, EdP.EReMo, “Equazioni differenziali alle derivate parziali: esistenza, regolarità e molteplicità delle soluzioni”, and by the project “Nonlinear differential problems with applications to real phenomena”, PRIN 2022, funded by the European Union, Next Generation EU, CUP 2022ZXZTN2. Francesco Leonetti has been supported by RIA-UNIVAQ “Equazioni differenziali e calcolo delle variazioni”.

Acknowledgements

We acknowledge the support of GNAMPA, INdAM, MUR, UNIVAQ.

  1. Communicated by: Giuseppe Mingione

References

[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl. (4) 182 (2003), no. 1, 53–79. 10.1007/s10231-002-0056-ySearch in Google Scholar

[2] A. Alvino, V. Ferone and G. Trombetti, A priori estimates for a class of non-uniformly elliptic equations, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381–391. Search in Google Scholar

[3] P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var. Partial Differential Equations 53 (2015), no. 3–4, 803–846. 10.1007/s00526-014-0768-zSearch in Google Scholar

[4] J. Björn, Boundedness and differentiability for nonlinear elliptic systems, Trans. Amer. Math. Soc. 353 (2001), no. 11, 4545–4565. 10.1090/S0002-9947-01-02834-3Search in Google Scholar

[5] L. Boccardo and H. Brezis, Some remarks on a class of elliptic equations with degenerate coercivity, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 3, 521–530. Search in Google Scholar

[6] L. Boccardo and G. Croce, Elliptic Partial Differential Equations, De Gruyter Stud. Math. 55, De Gruyter, Berlin, 2014. 10.1515/9783110315424Search in Google Scholar

[7] L. Boccardo, G. Croce and C. Tanteri, An elliptic system with degenerate coercivity, Rend. Mat. Appl. (7) 36 (2015), no. 1–2, 1–9. Search in Google Scholar

[8] L. Boccardo, A. Dall’Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51–81. Search in Google Scholar

[9] D. Breit, A. Cianchi, L. Diening, T. Kuusi and S. Schwarzacher, Pointwise Calderón–Zygmund gradient estimates for the 𝑝-Laplace system, J. Math. Pures Appl. (9) 114 (2018), 146–190. 10.1016/j.matpur.2017.07.011Search in Google Scholar

[10] I. Chlebicka, Y. Youn and A. Zatorska-Goldstein, Wolff potentials and measure data vectorial problems with Orlicz growth, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 64. 10.1007/s00526-022-02402-5Search in Google Scholar

[11] A. Cianchi, Nonlinear potentials, local solutions to elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 2, 335–361. 10.2422/2036-2145.2011.2.04Search in Google Scholar

[12] P. Cianci, G. R. Cirmi, S. D’Asero and S. Leonardi, Morrey estimates for solutions of singular quadratic nonlinear equations, Ann. Mat. Pura Appl. (4) 196 (2017), no. 5, 1739–1758. 10.1007/s10231-017-0636-5Search in Google Scholar

[13] G. R. Cirmi and S. Leonardi, Regularity results for solutions of nonlinear elliptic equations with L 1 , λ data, Nonlinear Anal. 69 (2008), no. 1, 230–244. 10.1016/j.na.2007.05.014Search in Google Scholar

[14] G. R. Cirmi, S. D’Asero, S. Leonardi, F. Leonetti, E. Rocha and V. Staicu, Existence and boundedness of weak solutions to some vectorial Dirichlet problems, Nonlinear Anal. 254 (2025), Paper No. 113751. 10.1016/j.na.2025.113751Search in Google Scholar

[15] G. Cupini, F. Leonetti and E. Mascolo, Local boundedness for solutions of a class of nonlinear elliptic systems, Calc. Var. Partial Differential Equations 61 (2022), no. 3, Paper No. 94. 10.1007/s00526-022-02204-9Search in Google Scholar

[16] F. Della Pietra and G. di Blasio, Comparison, existence and regularity results for a class of non-uniformly elliptic equations, Differ. Equ. Appl. 2 (2010), no. 1, 79–103. 10.7153/dea-02-07Search in Google Scholar

[17] P. Di Gironimo, S. Leonardi, F. Leonetti, M. Macrì and P. V. Petricca, Existence of solutions to some quasilinear degenerate elliptic systems with right hand side in a Marcinkiewicz space, Math. Eng. 5 (2023), no. 3, Paper No. 055. 10.3934/mine.2023055Search in Google Scholar

[18] P. Di Gironimo, F. Leonetti and M. Macrì, Existence and regularity for solutions of quasilinear degenerate elliptic systems, Nonlinear Anal. 245 (2024), Paper No. 113562. 10.1016/j.na.2024.113562Search in Google Scholar

[19] P. Di Gironimo, F. Leonetti, M. Macrì and P. V. Petricca, Existence of bounded solutions for some quasilinear degenerate elliptic systems, Minimax Theory Appl. 6 (2021), no. 2, 321–340. Search in Google Scholar

[20] P. Di Gironimo, F. Leonetti, M. Macrì and P. V. Petricca, Existence of solutions to some quasilinear degenerate elliptic systems when the datum has an intermediate degree of integrability, Complex Var. Elliptic Equ. 68 (2023), no. 9, 1566–1580. 10.1080/17476933.2022.2069753Search in Google Scholar

[21] G. Dolzmann, N. Hungerbühler and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), no. 4, 545–574. 10.1007/PL00004354Search in Google Scholar

[22] G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of 𝑛-Laplace type with measure valued right hand side, J. Reine Angew. Math. 520 (2000), 1–35. 10.1515/crll.2000.022Search in Google Scholar

[23] F. Duzaar and G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math. 133 (2011), no. 4, 1093–1149. 10.1353/ajm.2011.0023Search in Google Scholar

[24] Z. Feng, A. Zhang and H. Gao, Local boundedness under nonstandard growth conditions, J. Math. Anal. Appl. 526 (2023), no. 2, Article ID 127280. 10.1016/j.jmaa.2023.127280Search in Google Scholar

[25] V. Ferone and N. Fusco, VMO solutions of the 𝑁-Laplacian with measure data, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 4, 365–370. 10.1016/S0764-4442(97)85618-2Search in Google Scholar

[26] H. Gao, M. Huang, H. Deng and W. Ren, Global integrability for solutions to quasilinear elliptic systems, Manuscripta Math. 164 (2021), no. 1–2, 23–37. 10.1007/s00229-020-01183-5Search in Google Scholar

[27] H. Gao, M. Huang and W. Ren, Regularity for entropy solutions to degenerate elliptic equations, J. Math. Anal. Appl. 491 (2020), no. 1, Article ID 124251. 10.1016/j.jmaa.2020.124251Search in Google Scholar

[28] H. Gao, F. Leonetti and W. Ren, Regularity for anisotropic elliptic equations with degenerate coercivity, Nonlinear Anal. 187 (2019), 493–505. 10.1016/j.na.2019.06.017Search in Google Scholar

[29] D. Giachetti and M. M. Porzio, Existence results for some nonuniformly elliptic equations with irregular data, J. Math. Anal. Appl. 257 (2001), no. 1, 100–130. 10.1006/jmaa.2000.7324Search in Google Scholar

[30] D. Giachetti and M. M. Porzio, Elliptic equations with degenerate coercivity: Gradient regularity, Acta Math. Sin. (Engl. Ser.) 19 (2003), no. 2, 349–370. 10.1007/s10114-002-0235-1Search in Google Scholar

[31] T. Kuusi and G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci. 4 (2014), no. 1, 1–82. 10.1007/s13373-013-0048-9Search in Google Scholar PubMed PubMed Central

[32] T. Kuusi and G. Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 4, 929–1004. 10.4171/jems/780Search in Google Scholar

[33] R. Landes, On the existence of weak solutions of perturbated systems with critical growth, J. Reine Angew. Math. 393 (1989), 21–38. 10.1515/crll.1989.393.21Search in Google Scholar

[34] S. Leonardi, Gradient estimates below duality exponent for a class of linear elliptic systems, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 237–254. 10.1007/s00030-010-0093-ySearch in Google Scholar

[35] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha and V. Staicu, Maximum principles for some quasilinear elliptic systems, Nonlinear Anal. 194 (2020), Article ID 111377. 10.1016/j.na.2018.11.004Search in Google Scholar

[36] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha and V. Staicu, Local boundedness for weak solutions to some quasilinear elliptic systems, Minimax Theory Appl. 6 (2021), no. 2, 365–378. Search in Google Scholar

[37] S. Leonardi, F. Leonetti, E. Rocha and V. Staicu, Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems, Adv. Nonlinear Anal. 11 (2022), no. 1, 672–683. 10.1515/anona-2021-0205Search in Google Scholar

[38] S. Leonardi and J. Stará, Regularity up to the boundary for the gradient of solutions of linear elliptic systems with V M O -coefficients and L 1 , λ data, Complex Var. Elliptic Equ. 56 (2011), no. 12, 1085–1098. 10.1080/17476933.2010.534152Search in Google Scholar

[39] F. Leonetti and P. V. Petricca, Existence of bounded solutions to some nonlinear degenerate elliptic systems, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), no. 1, 191–203. 10.3934/dcdsb.2009.11.191Search in Google Scholar

[40] F. Leonetti and P. V. Petricca, Regularity for solutions to some nonlinear elliptic systems, Complex Var. Elliptic Equ. 56 (2011), no. 12, 1099–1113. 10.1080/17476933.2010.487208Search in Google Scholar

[41] F. Leonetti, E. Rocha and V. Staicu, Quasilinear elliptic systems with measure data, Nonlinear Anal. 154 (2017), 210–224. 10.1016/j.na.2016.04.002Search in Google Scholar

[42] F. Leonetti, E. Rocha and V. Staicu, Smallness and cancellation in some elliptic systems with measure data, J. Math. Anal. Appl. 465 (2018), no. 2, 885–902. 10.1016/j.jmaa.2018.05.047Search in Google Scholar

[43] F. Leonetti and R. Schianchi, A remark on some degenerate elliptic problems, Ann. Univ. Ferrara Sez. VII (N. S.) 44 (1998), 123–128. 10.1007/BF02828019Search in Google Scholar

[44] J. Leray and J.-L. Lions, Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97–107. 10.24033/bsmf.1617Search in Google Scholar

[45] G. Mingione and G. Palatucci, Developments and perspectives in nonlinear potential theory, Nonlinear Anal. 194 (2020), Article ID 111452. 10.1016/j.na.2019.02.006Search in Google Scholar

[46] D. K. Palagachev and L. G. Softova, Boundedness of solutions to a class of coercive systems with Morrey data, Nonlinear Anal. 191 (2020), Article ID 111630. 10.1016/j.na.2019.111630Search in Google Scholar

[47] A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 915–936. Search in Google Scholar

[48] L. G. Softova, Boundedness of the solutions to non-linear systems with Morrey data, Complex Var. Elliptic Equ. 63 (2018), no. 11, 1581–1594. 10.1080/17476933.2017.1397642Search in Google Scholar

[49] C. Trombetti, Existence and regularity for a class of non-uniformly elliptic equations in two dimensions, Differential Integral Equations 13 (2000), no. 4–6, 687–706. 10.57262/die/1356061245Search in Google Scholar

[50] S. Zhou, A note on nonlinear elliptic systems involving measures, Electron. J. Differential Equations 2000 (2000), Paper No. 08. Search in Google Scholar

Received: 2023-05-30
Revised: 2025-01-11
Published Online: 2025-02-01
Published in Print: 2025-04-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/acv-2023-0065/html
Scroll to top button