Home The simulation research on the natural circulation operation characteristic of FNPP in rolling and inclined condition
Article
Licensed
Unlicensed Requires Authentication

The simulation research on the natural circulation operation characteristic of FNPP in rolling and inclined condition

  • R. Li EMAIL logo , M. Peng , G. Xia and H. Li
Published/Copyright: March 2, 2021
Become an author with De Gruyter Brill

Abstract

Recently, the FNPP (Floating Nuclear Power Plant) has got more and more attention and rapid development due to very wide prospect application on remote areas or islands. In general, the IPWR (Integral Pressurized Water Reactor) is adopted to meet the requirements of the limited space, the nuclear safety and the maneuverability in marine. The IPWR could depend on natural circulation operation to remove the residual heat of core under accident or low load operation condition. Because the driving head is low, the natural circulation flow is likely to be influenced by rolling and inclined condition. To clarify the natural circulation flow characteristics of the core in FNPP rolling motion and inclined condition, based on the modified THEATRe code by adding the ocean motion module and spatial coordinate convert module, the main thermal-hydraulic parameters variation in rolling and inclined condition were obtained. The effect of inclined angle, rolling amplitude and period on the natural circulation flow were discussed. The natural circulation flow in the core fluctuates periodically with rolling motion. And the inclination and rolling will also cause the degree of steam superheat of OTSG secondary side fluctuate, which could impact on the stable operation of secondary side system.

Kurzfassung

In jüngster Zeit hat das Konzept schwimmender KKW eine erhöhte Aufmerksamkeit und eine rapide Weiterentwicklung erfahren, da sein Einsatz in abgelegenen Gebieten oder auf Inseln als sehr aussichtsreich angesehen wird. Dabei wird im Allgemeinen das Konzept eines integralen Druckwasserreaktors (IPWR) betrachtet, um den Anforderungen, die durch den begrenzten Platz, die zu gewährleistende nukleare Sicherheit und durch die Manövrierfähigkeit auf See gegeben sind, gerecht zu werden. Das Konzept des IPWR sieht den Betrieb im Naturumlauf zur Abfuhr der Nachzerfallsenergie des Kerns bei einem Unfall oder im Schwachlastbetrieb. Da dabei die Förderhöhe aufgrund des beengten Raumangebots niedrig ist, wird die natürliche Zirkulationsströmung mit hoher Wahrscheinlichkeit durch – durch Wellen hervorgerufene – Rollbewegungen und Schräglagen beeinflusst. In diesem Beitrag werden Arbeiten mit dem modifizierten THEATRe-Code vorgestellt, mit deren Hilfe die Eigenschaften der natürlichen Zirkulationsströmung des Kerns in rollenden und geneigten Zuständen des FNPP berechnet wurden. Dazu wurde das Programm THEATRe um ein Modul zur Berechnung der Bewegungen des Ozeans sowie um ein Modul zur Umrechnung der räumlichen Koordinaten erweitert. Es wurden die wichtigsten thermohydraulischen Parameter der Variation im rollenden und geneigten Zustand berechnet. Anschließend werden die Auswirkungen von Neigungswinkel, Rollamplitude und Periode auf die natürliche Zirkulationsströmung diskutiert. Es zeigt sich, dass die natürliche Zirkulationsströmung im Kern periodisch mit der Rollbewegung schwankt. Durch die Neigung und das Rollen schwankt auch der Grad der Dampfüberhitzung der OTSG-Sekundärseite, was sich auf den stabilen Betrieb des sekundärseitigen Systems auswirken könnte.

References

1 Kuznetsov, V. M.: Floating Nuclear Power Plants in Russia: AThreat to the Arctic, World Oceans and Non-Proliferation Treaty. Agency Rackurs Production, 2004Search in Google Scholar

2 Kostin, V. I.; Samoilov, O. B.; Vavilkin, V. N., et al.: Small floating nuclear power plants with ABV reactors for electric power generation, heat production and sea water desalination. Nuclear technology and societal needs, 2004Search in Google Scholar

3 Zhong, J.; Yang, X.; Jiang, S: The overview of natural circulation characteristics of a marine reactor under ocean condition. International Conference on Nuclear Engineering. (2009) ICONE17-43543, pp. 573–585, DOI:10.1115/ICONE17-7563310.1115/ICONE17-75633Search in Google Scholar

4 Hussain, M.; Reitsma, F.; Subki, M. H., et al.: Advances in Small Modular Reactor Technology Developments. IAEA Advanced Reactors Information System (ARIS), 2018Search in Google Scholar

5 Minelli, P.; Buongiorno, J.; Golay, M. et al.: Balance of plant and power transmission for the offshore floating nuclear plant. The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 2015Search in Google Scholar

6 Memmott, M. J.; Manera, A.; Boyack, J.; et al.: The primary reactor coolant system concept of the integral, inherently-safe light water reactor. Annals of Nuclear Energy 100 (2017) 53–67, DOI:10.1016/j.anucene.2016.08.01610.1016/j.anucene.2016.08.016Search in Google Scholar

7 Wang, M.; Manera, A.; Memmott, M. J.; Lee, J. C.; Qiu, S.: Preliminary design of the I2S-LWR containment system. Annals of Nuclear Energy 145 (2020) 106065, DOI:10.1016/j.anucene.2018.03.01410.1016/j.anucene.2018.03.014Search in Google Scholar

8 Strother, M. B.: Hydrodynamic analysis of the offshore floating nuclear power plant. Massachusetts Institute of Technology, 2015Search in Google Scholar

9 Yan, B. H.: Review of the nuclear reactor thermal hydraulic research in ocean motions. Nuclear Engineering and Design 313 (2017) 370–385, DOI:10.1016/j.nucengdes.2016.12.04110.1016/j.nucengdes.2016.12.041Search in Google Scholar

10 Huang, Z.; Gao, P.-Z.; Tan, S.; She, Y.-J.: Mechanism Analysis of Effect of Rolling Motion on Heat Transfer. Nuclear Power Engineering 31 (2010) 50–54Search in Google Scholar

11 Liu, Y. S.: Study on Flow Characteristics of Pulsating Flow in Rectangular Channel (M. D. thesis). Harbin Engineering University, Harbin, China, 2011Search in Google Scholar

12 Yan, B. H.; Yu, L.; Yang, Y. H.: Theoretical model of laminar flow in a channel or tube under ocean conditions. Energy conversion and management 52 (2011) 2587 –2597, DOI:10.1016/j.enconman.2011.01.00710.1016/j.enconman.2011.01.007Search in Google Scholar

13 Qin, S.; Gao, P.: Effect of rolling motion on forces acting on bubbles in sub-cooled boiling flow. Nuclear Power Engineering 29 (2008) 20–23Search in Google Scholar

14 Yan C, Yan C, Sun L: Analysis of additional radial force acting on bubble subjected to periodical force. Atomic Energy Science and Technology 47 (2013) 2220–2224, DOI:10.7538/yzk.2013.47.12.222010.7538/yzk.2013.47.12.2220Search in Google Scholar

15 Tan, S. C.: Effect of rolling motion upon thermal hydraulic properties of nuclear circulation (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2006Search in Google Scholar

16 Cao, X. X.: Effect of rolling condition on two phase flow pattern in vertical tubes (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2006Search in Google Scholar

17 Zhang, J. H.: Study on flow pattern and resistance characteristics of air-water two phase flow in rolling motion (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2009Search in Google Scholar

18 Jia, H.; Tan, S.; Gao, P., Yan, C.: Experimental study on horizontal single phase water flow resistance characteristics under unsteady flow condition. Atomic Energy Science and Technology 45 (2011) 168–173Search in Google Scholar

19 Pendyala, R.; Jayanti, S.; Balakrishnan, A. R.: Convective heat transfer in single-phase flow in a vertical tube subjected to axial low frequency oscillations. Heat and mass transfer 44 (2008) 857–864, DOI:10.1007/s00231-007-0302-310.1007/s00231-007-0302-3Search in Google Scholar

20 Liu, Y. S.: Study on flow characteristics of pulsating flow in rectangular channel (M.D.thesis). Harbin Engineering University, Harbin, China, 2011Search in Google Scholar

21 Xie, Q.; Yan C.; Cao X.; et al.: Single-phase flow characteristics in narrow channel under rolling motion. Atomic Energy Science and Technology 46 (2012) 294–298Search in Google Scholar

22 Xing, D.; Yan, C.; Sun, L.; et al.: Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head. Annals of Nuclear Energy 54 (2013) 141–148, DOI:10.1016/j.anucene.2013.09.03510.1016/j.anucene.2013.09.035Search in Google Scholar

23 Zhuang N, Tan S, Yuan H, et al.: Flow resistance characteristics of pulsating laminar flow in rectangular channels. Annals of Nuclear Energy 73 (2014) 398–407, DOI:10.1016/j.anucene.2014.06.05710.1016/j.anucene.2014.06.057Search in Google Scholar

24 Lan, S.; Tan, S. C.: The characteristics of heat transfer in a narrow rectangular channel under rolling motion. International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013, 55812: V004T09A106, DOI:10.1115/ICONE21-1658410.1115/ICONE21-16584Search in Google Scholar

25 Yu, Z.; Lan, S.; Yuan, H.; et al.: Temperature fluctuation characteristics in a mini-rectangular channel under rolling motion. Progress in Nuclear Energy 81 (2015) 203–216, DOI:10.1016/j.pnucene.2015.01.01710.1016/j.pnucene.2015.01.017Search in Google Scholar

26 Li, H.; Zhu, Q.; Wang, S.; et al.: Prospect of small modular reactor development. Progress report on nuclear science and technology in China (Vol. 3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No. 10–nuclear technology economy and management modernization sub-volume. 2014Search in Google Scholar

27 Jin, G.; Yan, C.; Sun, L.; et al.: Research on transient flow resistance of bubbly flow in rectangular channel under rolling motions. Atomic Energy Science and Technology 46 suppl. (2012) 255–258, DOI:10.1063/1.481684710.1063/1.4816847Search in Google Scholar

28 Liu, X.; Huang, Y.; Ma, J.; et al.: Frictional resistance characteristics of single-phase flow in narrow rectangular channel with rolling motion. Nucl. Power Eng. 33 (2012) 54–58Search in Google Scholar

29 Fan, G.; Yan, C.; Cao, X.: The comparison research on two phase flow pattern and pressure differential fluctuation in rolling and steady vertical tubes. Applied Science and Technology 7 (2006)Search in Google Scholar

30 Luan, F.: Research on effect of rolling condition on gas-water flow in horizontal tubes (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2009Search in Google Scholar

31 Zhang, J. H.: Study on flow pattern and resistance characteristics of air-water two phase flow in rolling motion (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2009Search in Google Scholar

32 Wang, C.: Study of flow and heat transfer in rectangular channel in periodic force field (Ph.D.thesis). Harbin Engineering University, Harbin, China, 2013Search in Google Scholar

33 Yan, C.; Yu, K.; Luan, F.; et al.: Rolling effects on two-phase flow pattern and void fraction. Nuclear Power Engineering 29 (2008) 35–38Search in Google Scholar

34 Iyori, I.; Inasaka, F.; Matsuoka, T.; et al.: Basic flow rate characteristics of natural circulation of marine reactors at inclined attitude. Proceedings of second international topical meeting on nuclear power plant thermal hydraulics and operations. 1986Search in Google Scholar

35 Iyori, I.; Aya, I.; Murata, H.; et al.: Natural circulation of integrated-type marine reactor at inclined attitude. Nuclear Engineering and Design, 1987, 99: 423–430, DOI:10.1016/0029-5493(87)90138-510.1016/0029-5493(87)90138-5Search in Google Scholar

36 Murata, H.; Sawada, K.; Kobayashi, M.: Natural circulation characteristics of a marine reactor in rolling motion and heat transfer in the core. Nuclear Engineering and Design 215 (2002) 69 –85, DOI:10.1016/S0029-5493(02)00042-010.1016/S0029-5493(02)00042-0Search in Google Scholar

37 Murata, H.; Sawada, K.; Kobayashi, M.: Experimental investigation of natural convection in a core of a marine reactor in rolling motion. Journal of Nuclear Science and Technology 37 (2000) 509–517, DOI:10.1080/18811248.2000.971492410.1080/18811248.2000.9714924Search in Google Scholar

38 Ishida, I.; Kusunoki, T.; Murata, H., et al.: Thermal-hydraulic behavior of a marine reactor during oscillations. Nuclear Engineering and Design 120 (1990) 213–225, DOI:10.1016/0029-5493(90)90374-710.1016/0029-5493(90)90374-7Search in Google Scholar

39 Ishida, I.; Kusunoki, T.; Ochiai, M.; et al.: Effects by sea wave on thermal hydraulics of marine reactor system. Journal of Nuclear Science and Technology 32 (1995) 740–751, DOI:10.1080/18811248.1995.973176910.1080/18811248.1995.9731769Search in Google Scholar

40 Ishida, I.; Yao, T.; Teshima, N.: Experiments of two-phase flow dynamics of marine reactor behavior under heaving motion. Journal of Nuclear Science and Technology 34 (1997) 771–782, DOI:10.1080/18811248.1997.973374110.1080/18811248.1997.9733741Search in Google Scholar

41 Kim, J. H.; Park, G. C.: Development of Retran-03/mov code for thermal-hydraulic analysis of nuclear reactor under mowing conditions. Nuclear Engineering and Technology 28 (1996) 542–550Search in Google Scholar

42 Kim, J. H.; Kim, T.W.; Lee, S. M.; et al.: Study on the natural circulation characteristics of the integral type reactor for vertical and inclined conditions. Nuclear Engineering and Design 207 (2001) 21 –31, DOI:10.1016/S0029-5493(00)00417-910.1016/S0029-5493(00)00417-9Search in Google Scholar

43 Yun, G.; Qiu, S. Z.; Su, G. H.; et al.: The influence of ocean conditions on two-phase flow instability in a parallel multi-channel system. Annals of Nuclear Energy 35 (2008) 1598–1605, DOI:10.1016/j.anucene.2008.03.00310.1016/j.anucene.2008.03.003Search in Google Scholar

44 Jiang, C. L.: The research on marine nuclear power plant operating characteristics in ocean motion (Ph.D.thesis). Tsinghua University, 2002Search in Google Scholar

45 Yan, B.; Yu, L.: Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions. Annals of Nuclear Energy 36 (2009) 733–741, DOI:10.1016/j.anucene.2009.02.00510.1016/j.anucene.2009.02.005Search in Google Scholar

46 Tan C, Zhang H, Zhao H: Development of ocean-condition code based on RELAP5. Nuclear Power Engineering 30 (2009) 53–56Search in Google Scholar

47 He, L.; Wang, B.; Xia, G.; et al.: Study on natural circulation characteristics of an IPWR under inclined and rolling condition. Nuclear Engineering and Design 317 (2017) 81–89, DOI:10.1016/j.nucengdes.2017.03.03310.1016/j.nucengdes.2017.03.033Search in Google Scholar

48 Mesina, G. L.; Aumiller, D. L.; Buschman, F. X.; Kyle,M. R.: Modeling moving systems with RELAP5–3D. Nuclear Science and Engineering 182 (2016) 83–95, DOI:10.13182/NSE15-310.13182/NSE15-3Search in Google Scholar

49 Li, Z. W.; Zhang, X. Y.; Chen, H. D.; et al.: Sub-channel analysis on thermal hydraulic characteristic of PWR under ocean condition. Atomic Energy Science and Technology 10 (2015) 1758–1765Search in Google Scholar

50 Wu, P.; Shan, J.; Xiang, X.; et al.: The development and application of a sub-channel code in ocean environment. Annals of Nuclear Energy 95 (2016) 12 –22, DOI:10.1016/j.anucene.2016.04.03010.1016/j.anucene.2016.04.030Search in Google Scholar

51 Khan, S. U. D.; Peng, M.; Khan, S. U. D.: Neutronics and thermal hydraulic coupling analysis of integrated pressurized water reactor. International Journal of Energy Research 37 (2013) 1709–1717, DOI:10.1002/er.298110.1002/er.2981Search in Google Scholar

52 Wang, Z. Y.; Wang, G. H.: THEATRe Modeling Techniques Handbook. GSE Power Systems, 2001Search in Google Scholar

53 Ghadimi, P.; Bandari, H. P.; Rostami, A. B.: Determination of the heave and pitch motions of a floating cylinder by analytical solution of its diffraction problem and examination of the effects of geometric parameters on its dynamics in regular waves. International Journal of Applied Mathematical Research, 2012, 1(4): 611–633, DOI:10.14419/ijamr.v1i4.39610.14419/ijamr.v1i4.396Search in Google Scholar

54 Li, R.: Research on natural circulation flow characteristics of Integrated Pressurized Water Reactor in ocean motion (Ph.D.thesis). Harbin Engineering University, 2014Search in Google Scholar

Received: 2020-08-21
Published Online: 2021-03-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/KERN-2020-0058/html?lang=en
Scroll to top button