Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On reduction of informational expenses in solving ill-posed problems with not exactly given input data
-
S. G. Solodky
Veröffentlicht/Copyright:
9. Mai 2008
Abstract
A class of approximate methods to solve operator equations of first kind with not exactly given input data is constructed. For involved methods their optimality by the order on sets of sourcewise represented solutions is proved and the bound of informational expenses is obtained. These algorithms are numerically implemented in an efficient way. An example of application of two such algorithms is given.
Key words.: Ill-posed problems; regularization method; discretization; projection scheme; discrepancy principle
Received: 2006-08-10
Published Online: 2008-05-09
Published in Print: 2008-March
© de Gruyter 2008
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- The multidimensional refinement indicators algorithm for optimal parameterization
- Inverse problem for the Schrödinger operator in an unbounded strip
- Identification of two memory kernels in a fully hyperbolic phase-field system
- A priori weighting for parameter estimation
- On reduction of informational expenses in solving ill-posed problems with not exactly given input data
Schlagwörter für diesen Artikel
Ill-posed problems;
regularization method;
discretization;
projection scheme;
discrepancy principle
Artikel in diesem Heft
- The multidimensional refinement indicators algorithm for optimal parameterization
- Inverse problem for the Schrödinger operator in an unbounded strip
- Identification of two memory kernels in a fully hyperbolic phase-field system
- A priori weighting for parameter estimation
- On reduction of informational expenses in solving ill-posed problems with not exactly given input data