Startseite Convolution and Reciprocity Formulas for Bernoulli Polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convolution and Reciprocity Formulas for Bernoulli Polynomials

  • Takashi Agoh EMAIL logo und Karl Dilcher
Veröffentlicht/Copyright: 4. August 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Band 11 Heft 6

Abstract

We prove a new convolution identity for sums of products of two Bernoulli polynomials. This can be rewritten to obtain a reciprocity relation for a related sum. The proof uses some results on Stirling numbers of both kinds which are of independent interest. In particular, a class of polynomials related to the Stirling numbers of the second kind turns out to be a useful tool.

Received: 2010-10-07
Accepted: 2011-05-18
Published Online: 2011-08-04
Published in Print: 2011-December

© de Gruyter 2011

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/INTEG.2011.067/html?lang=de
Button zum nach oben scrollen