Home Physical Sciences Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards
Article
Licensed
Unlicensed Requires Authentication

Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards

  • Karin Fackler , Thomas Kuncinger , Thomas Ters and Ewald Srebotnik
Published/Copyright: February 4, 2008
Holzforschung
From the journal Volume 62 Issue 2

Abstract

Enzymatic functionalization is an attractive tool to provide a reactive interface for further processing of lignocellulosic materials, such as wood particles and fibers. Here, spruce wood particles have been functionalized by fungal laccase combined with 4-hydroxy-3-methoxy-benzylamine (HMBA) or 4-hydroxy-3-methoxybenzylurea (HMBU). The expectation was crosslinking with resins in subsequent glueing processes, which should improve strength properties of particle boards. Essential process parameters, such as liquid to solid mass ratio and treatment time, were optimized on a laboratory scale resulting in HMBA and HMBU binding yields of 90% and above as determined by radiochemical mass balance analysis. We employed a multifactorial experimental design for board production from treated wood particles and urea/formaldehyde resin. Mechanical testing and multivariate data analysis revealed, for the first time, an increase of internal bond (IB) as a result of functionalization with HMBU. HMBA was not successful. Variance analysis of relevant parameters and their interactions demonstrated a highly significant difference (P>99.99%) between boards treated with laccase/HMBU versus untreated wood particles. Due to positive interactions, functionalization was most effective at high bulk density (750 kg m-3) and high resin content (10%) resulting in a calculated IB improvement of 0.12 N m-2 (21%).


Corresponding author. Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, A-1060 Wien, Austria

Received: 2007-9-3
Accepted: 2007-11-5
Published Online: 2008-02-04
Published Online: 2008-01-18
Published in Print: 2008-03-01

©2008 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Meetings
  2. Cellulose aerogels: Highly porous, ultra-lightweight materials
  3. Esterification of carboxylic acids on cellulosic material: Solid state reactions
  4. Bagasse alkaline sulfite-anthraquinone (AS/AQ) pulping and totally chlorine free (TCF) bleaching
  5. Effect of abnormal fibres on the mechanical properties of paper made from Norway spruce, Picea abies (L.) Karst.
  6. Development of fully bio-based composite: Wood/cellulose diacetate/poly(lactic acid) composite
  7. Crystallinity and mesoporosity of carbon produced from ligno-p-cresol and their improvement by pulverization and acid treatment
  8. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 1: Kinetics of the formation of enol ether from non-phenolic C6-C2 type model compounds
  9. Study of kinetics of reaction of lignin model compounds with propylene oxide
  10. Two-dimensional homo- and hetero-correlation technique applied to NIR and py-MBMS spectra of wood
  11. UV resonance Raman spectroscopic study of photodegradation of hardwood and softwood lignins by UV laser
  12. A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy
  13. Structure elucidation of phenylethanoid glycosides from Paulownia tomentosa Steud. var. tomentosa wood
  14. A generalized mat consolidation model for wood composites
  15. Prediction and optimization of surface roughness in milling of medium density fiberboard (MDF) based on Taguchi orthogonal array experiments
  16. An investigation on the permeability of different wood furnish materials
  17. Laccase-catalyzed functionalization with 4-hydroxy-3-methoxybenzylurea significantly improves internal bond of particle boards
  18. Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy
  19. Adhesive bond strength of end grain joints in softwood with varying density
  20. An experimental study of the effects of moisture variations and gradients in the joint area in steel-timber dowel joints
  21. A new image analysis algorithm for calculating percentage wood failure
  22. Dr. Gordon Leary
Downloaded on 7.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2008.045/html
Scroll to top button