Home Characterization of electrolyzed magnesium spent-sulfite liquor
Article
Licensed
Unlicensed Requires Authentication

Characterization of electrolyzed magnesium spent-sulfite liquor

  • Okko Ringena , Bodo Saake and Ralph Lehnen
Published/Copyright: November 16, 2005
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 59 Issue 6

Abstract

Spent sulfite liquor derived from magnesium bisulfite pulping of beech was electrolyzed in a pilot-plantelectrolysis cell. During the electrochemical treatment (125 mA cm−2; 60°C; 180 min), desalination of the anolyte took place and the magnesium concentration was reduced to approximately 60%. In addition, the pH decreased from 5 to 1. Three differently treated liquors (SSL pH 5; SSLe pH 2.5; SSLe pH 1) were chosen for further analysis. The average molar mass of the fractions was determined by size exclusion chromatography. Extended electrolysis time increased the molar mass of the lignosulfonates (Mw: SSL pH 5, 5700 g mol−1; SSLe pH 2.5, 6500 g mol−1; SSLe pH 1, 7400 g mol−1). The content of phenolic hydroxyl and sulfonic acid groups did not undergo significant changes. Nevertheless, lignosulfonates obtained after electrolysis showed higher charge densities than the unmodified product (SSL pH 5, 1590 μeq g−1; SSLe pH 2.5, 1760 μeq g−1; SSLe pH 1, 1920 μeq g−1). Separation of the liquors into five fractions was performed using four ultrafiltration membranes (100, 50, 10 and 1 kDa). This allowed detailed structural analysis of high- and low-molar-mass lignosulfonate fractions in terms of the modifications induced by electrolysis.

:

Corresponding author. BFH Institut für Holzchemie, Leuschnerstr. 91, 21027 Hamburg, Germany

References

Blanco, M.A., Negro, C., Tijero, J., DeJong, A.C.M.P., Schmal, D. (1996) Electrochemical treatment of black liquor from straw pulping. Separ. Sci. Technol.19:2705–2712.10.1080/01496399608000821Search in Google Scholar

Böttger, J., Krause, T., Schurz, J. (1975) Isolierung reiner Ligninsulfonate aus Sulfitablauge. Das Papier7:305–308.Search in Google Scholar

Brandt, B., Born, G. (1996) Verfahren und Anlage zu einer elektrochemischen Behandlung von Zellstoffablauge. DE Patent 4306260 C2.Search in Google Scholar

Buchholz, R.F., Neal, A.N., McCarthy, J.L. (1992) Some properties of paucidisperse gymnosperm lignin sulfonates of different molecular weights. J. Wood Chem. Technol.4:447–469.10.1080/02773819208545791Search in Google Scholar

Cathala, B., Saake, B., Faix, O., Monties, B. (2003) Association behaviour of lignins and lignin polymer model compounds studied by multidetector size-exclusion chromatography. J. Chromatogr. A1020:229–239.10.1016/j.chroma.2003.08.046Search in Google Scholar

Chen, F., Lu, Z., Tu, B. (2003) Electro-degradation of sodium lignosulfonate. J. Wood Chem. Technol.3/4:261–277.Search in Google Scholar

Chum, H.L., Baizer, M.M. (Eds.) The Electrochemistry of Biomass and Derived Materials. ACS Monograph 183. American Chemistry Society, Washington, 1985.Search in Google Scholar

Cloutier, J.N., Azarniouch, M.K., Callender, D. (1994) Electrolysis of weak black liquor, Part III: Continuous operation test and system design considerations. Pulp Pap. Can.5:T210–T214.Search in Google Scholar

De Sousa, F., Reimann, A., Björklund, M., Nilvebrant, J., Nilvebrant, N.O. (2001) Estimating the amount of phenolichydroxyl groups in lignins. In: Proceedings of 11th ISWP Conference, Vol. III. pp. 649–653.Search in Google Scholar

Dubey, G.A., McElhinney, T.R., Wiley, A.J. (1965) Electrodialysis – A new unit operation for recovery of values from spent sulfite liquor. Tappi2:95–98.Search in Google Scholar

Eisenbraun, E.W. (1963) The separation and fractionation of lignosulfonic acids from spent sulfite liquor with tri-n-hexylamine in organic solvents. Tappi2:104–107.Search in Google Scholar

Faix, O. (1992) New aspects of lignin utilization in large amounts. Das Papier12:733–739.Search in Google Scholar

Fredheim, G.E., Braaten, S.M., Christensen, B.E. (2002) Mole-cular weight determination of lignosulfonates by size exclusion chromatography and multi-angle laser light scattering. J. Chromatogr. A942:191–199.10.1016/S0021-9673(01)01377-2Search in Google Scholar

Fredheim, G.E., Braaten, S.M., Christensen, B.E. (2003) Comparison of molecular weight and molecular weight distribution of softwood and hardwood lignosulfonates. J. Wood Chem. Technol.2:197–215.Search in Google Scholar

Glasser, W.G., Davé, V., Frazier, C.E. (1993) Molecular weight distribution of (semi-)commercial lignin derivates. J. Wood Chem. Technol.4:545–559.10.1080/02773819308020533Search in Google Scholar

Grubisic, Z., Rempp, P., Benoit, H. (1967) A universal calibration for gel permeation chromatography. Polym. Lett.5:753–759.10.1002/pol.1967.110050903Search in Google Scholar

Hachey, J.M., Bui, V.T., Tremblay, Y., Houde, D. (1986) Physicochemical analysis of a spent sulfite liquor from a CMP pulp. J. Wood Chem. Technol.3:389–410.10.1080/02773818608085234Search in Google Scholar

Haney, M.A. (1985) A differential viscosimeter 2. Am. Lab.17:116–126.Search in Google Scholar

Jaako Pöyry (1997) Umweltverträgliche Holzaufschlussverfahren. In: Schriftenreihe “Nachwachsende Rohstoffe” Band 8. Landwirtschaftsverlag GmbH, Münster, Germany. pp. 78–81.Search in Google Scholar

Kontturi, A.K., Sundholm, G. (1986) The extraction and fractionation of lignosulfonates with long chain aliphatic amines. Acta Chem. Scand.40:121–125.10.3891/acta.chem.scand.40a-0121Search in Google Scholar

Löbbecke, J.G., Lindner, A., Wegener, G., Wabner, D.W. (1990) Anodic modification of lignin during electrolysis in theorganocell process. Holzforschung6:401–406.10.1515/hfsg.1990.44.6.401Search in Google Scholar

Mintz, M.S., Lacey, R.E., Lang, E.W. (1967) Separation of pulping liquor components with electrodialysis processes. Tappi3:137–146.Search in Google Scholar

Norgren, M., Lindstrom, B. (2000) Physico-chemical characterization of a fractionated kraft lignin. Holzforschung5:528–534.10.1515/HF.2000.089Search in Google Scholar

Paleologou, M., Cloutier, J.N., Ramamurthy, P., Berry, R.M., Azarniouch, M.K., Dorica, J. (1994) Membrane technologies for pulp and paper applications. Pulp Pap. Can.10:T386–T390.Search in Google Scholar

Ringena, O., Saake, B., Lehnen, R. (2005). Isolation and fractionation of lignosulfonates by amine extraction and ultrafiltration: a comparative study. Holzforschung59:405–412.Search in Google Scholar

Utley, J.H., Smith, C.Z. (1988) Electrochemical treatment of lignins. US Patent 4786382.Search in Google Scholar

Vieböck, F., Schwappach, A. (1930) Eine neue Methode zur maßanalytischen Bestimmung der Methoxyl- und Äthoxylgruppe. Chem. Ber.63:2818–2823.10.1002/cber.19300631022Search in Google Scholar

Weber, H.K., Obermaier, A., Promberger, A., Sixta, H. (2002) Properties of the lignosulfonates from the pulping process of the Lenzing AG. In: International Symposium on Wood-Based Materials, Vienna. pp. 25–30.Search in Google Scholar

Will, R., Kaelin, T., Kishi, A. (2002) Lignosulfonates. In: Chemical Economics Handbook. (http://www.sriconsulting.com/CEH).Search in Google Scholar

Yoshiyama, A., Nonaka, T., Chou, T.C., Tien, H.J. (1988) Anodic degradation of lignins I. Hardwood lignins. Mokuzai Gakkaishi2:155–161.Search in Google Scholar

Published Online: 2005-11-16
Published in Print: 2005-11-01

©2005 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Contents
  2. Species index (scientific names)
  3. Subject Index
  4. Acknowledgement
  5. Author Index
  6. Ultrastructural changes in a holocellulose pulp revealed by enzymes, thermoporosimetry and atomic force microscopy
  7. Development of wet strength additives from wheat gluten
  8. Characterization of electrolyzed magnesium spent-sulfite liquor
  9. Molecular weight-functional group relations in softwood residual kraft lignins
  10. Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi
  11. Effect of water on wood liquefaction and the properties of phenolated wood
  12. Effect of wood species and molecular weight of phenolic resins on curing behavior and bonding development
  13. Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds
  14. Comparison between HT-dried and LT-dried spruce timber in terms of shape and dimensional stability
  15. Physical properties of earlywood and latewood of Pinus radiata D. Don: Anisotropic shrinkage, equilibrium moisture content and fibre saturation point
  16. Effect of stress levels on compressive low-cycle fatigue behaviour of softwood
  17. Comparison of morphological and chemical properties between juvenile wood and compression wood of loblolly pine
  18. Ultrastructure of commercial recycled pulp fibers for the production of packaging paper
  19. Oxalate regulation by two brown rot fungi decaying oxalate-amended and non-amended wood
  20. Pine and spruce roundwood species classification using multivariate image analysis on bark
  21. Detection and species discrimination using rDNA T-RFLP for identification of wood decay fungi
  22. Personalia
  23. Award presentation on the occasion of the 13th International Symposium on Wood, Fibre and Pulping Chemistry, May 16–19, 2005, Auckland, New Zealand
  24. NMR studies on Fraser fir Abies fraseri (Pursh) Poir. Lignins
Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2005.098/html
Scroll to top button