Home Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood
Article
Licensed
Unlicensed Requires Authentication

Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood

  • M. Tiitta , P. Kainulainen , A. M. Harju , M. Venäläinen , A.-M. Manninen , M. Vuorinen and H. H.Viitanen
Published/Copyright: June 1, 2005
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 57 Issue 4

Summary

This study examined the effects of physical (moisture content, water content and wood density) and chemical properties (concentration of phenolics and resin acids) on the electrical properties of Scots pine (Pinus sylvesteris L.) wood specimens. Complex impedance was measured from heartwood and sapwood specimens using frequencies between 5 kHz and 1 MHz. Significant correlation between density and electrical properties was found at high frequencies with sapwood specimens in which the extractive content was low. Moisture content had an effect on electrical properties over the whole frequency range. Electrical properties of heartwood samples with high extractive content were differently affected by the chemical and physical properties. Electrical properties were sufficient to distinguish between the samples from the brown-rot resistant and susceptible Scots pine trees.

:
Published Online: 2005-06-01
Published in Print: 2003-06-26

Copyright © 2003 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.)
  2. Detection and Species Identification of Wood-Decaying Fungi by Hybridization of Immobilized Sequence-Specific Oligonucleotide Probes with PCR-Amplified Fungal Ribosomal DNA Internal Transcribed Spacers
  3. Analysis of Protein Expression along the Normal to Tension Wood Gradient in Eucalyptus gunnii
  4. Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood
  5. Chemical Characterisation of Wood of Roman Ships Brought to Light in the Recently Discovered Ancient Harbour of Pisa (Tuscany, Italy)
  6. Lignin Structures in Normal and Compression Wood. Evaluation by Thioacidolysis Using Ethanethiol and Methanethiol
  7. Lignin-Carbohydrate Condensation Product Formation in a Biomimetic Model Pulp Bleaching System
  8. Viscoelastic Behaviour of Wood Fibres during the Hot Pressing of Medium Density Fibreboard
  9. Measuring Relative Fibre Length in Scots Pine by Non-Destructive Wood Sampling
  10. Modelling Log-End Cracks Due to Growth Stresses: Calculation of the Elastic Energy Release Rate
  11. Modeling Ovendry Softwood Resistivity Based on the Resistor Network Theory
  12. Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch
  13. A Theoretical Analysis of Timber Drying in Oscillating Climates
  14. Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood
  15. Wood-Derived Porous Ceramics via Infiltration of SiO2-Sol and Carbothermal Reduction
  16. Manufacture of Fiberboard from Wood Fibers Activated with Fentons Reagent (H2O2/FeSO4)
Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2003.064/html
Scroll to top button