Modeling Ovendry Softwood Resistivity Based on the Resistor Network Theory
-
Z.-H. Jiang
Summary
This study develops a method to theoretically calculate ovendry softwood resistance and resistivity based on block transformation theory. The resistance of a single cell was calculated as the sum of a combination of serial and parallel connections of the two end cell walls, four side cell walls and cell cavity. One cell was considered as a resistor, and the wood as a network of single cell resistors. Resistance was calculated for a group of four resistors. After several iterations, the total resistance of wood was obtained. To test the model, experiments were conducted on Masson pine specimens. The resistances of fifty specimens were measured and their resistivities calculated. A comparison of the theoretical calculations and the measured results revealed a difference between the measured average resistivity of specimens and the model calculations of less than 8%. The resistivity of softwood was found to relate to the size of wood cells, amount of ray cells and the percentage of latewood.
Copyright © 2003 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.)
- Detection and Species Identification of Wood-Decaying Fungi by Hybridization of Immobilized Sequence-Specific Oligonucleotide Probes with PCR-Amplified Fungal Ribosomal DNA Internal Transcribed Spacers
- Analysis of Protein Expression along the Normal to Tension Wood Gradient in Eucalyptus gunnii
- Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood
- Chemical Characterisation of Wood of Roman Ships Brought to Light in the Recently Discovered Ancient Harbour of Pisa (Tuscany, Italy)
- Lignin Structures in Normal and Compression Wood. Evaluation by Thioacidolysis Using Ethanethiol and Methanethiol
- Lignin-Carbohydrate Condensation Product Formation in a Biomimetic Model Pulp Bleaching System
- Viscoelastic Behaviour of Wood Fibres during the Hot Pressing of Medium Density Fibreboard
- Measuring Relative Fibre Length in Scots Pine by Non-Destructive Wood Sampling
- Modelling Log-End Cracks Due to Growth Stresses: Calculation of the Elastic Energy Release Rate
- Modeling Ovendry Softwood Resistivity Based on the Resistor Network Theory
- Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch
- A Theoretical Analysis of Timber Drying in Oscillating Climates
- Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood
- Wood-Derived Porous Ceramics via Infiltration of SiO2-Sol and Carbothermal Reduction
- Manufacture of Fiberboard from Wood Fibers Activated with Fentons Reagent (H2O2/FeSO4)
Articles in the same Issue
- Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.)
- Detection and Species Identification of Wood-Decaying Fungi by Hybridization of Immobilized Sequence-Specific Oligonucleotide Probes with PCR-Amplified Fungal Ribosomal DNA Internal Transcribed Spacers
- Analysis of Protein Expression along the Normal to Tension Wood Gradient in Eucalyptus gunnii
- Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood
- Chemical Characterisation of Wood of Roman Ships Brought to Light in the Recently Discovered Ancient Harbour of Pisa (Tuscany, Italy)
- Lignin Structures in Normal and Compression Wood. Evaluation by Thioacidolysis Using Ethanethiol and Methanethiol
- Lignin-Carbohydrate Condensation Product Formation in a Biomimetic Model Pulp Bleaching System
- Viscoelastic Behaviour of Wood Fibres during the Hot Pressing of Medium Density Fibreboard
- Measuring Relative Fibre Length in Scots Pine by Non-Destructive Wood Sampling
- Modelling Log-End Cracks Due to Growth Stresses: Calculation of the Elastic Energy Release Rate
- Modeling Ovendry Softwood Resistivity Based on the Resistor Network Theory
- Comparison of the TL-Shear Strength of Normal and Compression Wood of European Larch
- A Theoretical Analysis of Timber Drying in Oscillating Climates
- Comparing the Effect of Chemical and Physical Properties on Complex Electrical Impedance of Scots Pine Wood
- Wood-Derived Porous Ceramics via Infiltration of SiO2-Sol and Carbothermal Reduction
- Manufacture of Fiberboard from Wood Fibers Activated with Fentons Reagent (H2O2/FeSO4)