Home Physical Sciences Softwood Bark Pyrolysis Oil-PF Resols. Part 2. Thermal Analysis by DSC and TG
Article
Licensed
Unlicensed Requires Authentication

Softwood Bark Pyrolysis Oil-PF Resols. Part 2. Thermal Analysis by DSC and TG

  • C. Amen-Chen , B. Riedl and C. Roy
Published/Copyright: June 1, 2005
Holzforschung
From the journal Volume 56 Issue 3

Summary

Cure behavior of resins formulated with petroleum phenol replaced by 25 and 50 wt% of softwood bark-derived pyrolysis oils, using various formaldehyde to phenolics molar ratios and alkalinity content, was characterized by Differential Scanning Calorimetry (DSC). Kinetic parameters were obtained by the Borchart-Daniels method and the model-free (Vyazovkin) method. Resins containing up to 50% by wt of pyrolysis oils had slower cure kinetics and lower extent of condensation reaction compared to a neat laboratory made phenol-formaldehyde resin. However, very similar kinetic curing behavior to the standard resins was found for resols having 25% by wt of the petroleum phenol replaced by the pyrolysis oils. Thermogravimetric analysis (TG) of cured pyrolysis oil-PF resins has been done under nitrogen and air environments at a constant heating rate. Thermal behavior of resins containing pyrolysis oils differed depending on the nature of the purge gas used in TG. Increasing the amount of pyrolysis oils decreased the thermal resistance of the experimental resins.

:
Published Online: 2005-06-01
Published in Print: 2002-04-29

Copyright © 2002 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Weight Loss and Cell Wall Degradation in Rubberwood Caused by Sapstain Fungus Botryodiplodia theobromae
  2. Changes of EPR Spectra of Wood Impregnated with Copper-Based Preservatives during Exposure to Several Wood-Rotting Fungi
  3. Quantitative Analyses of Morphological Variation of Cross-Sectional Tracheids of Hinoki (Chamaecyparis obtusa Endl.) Near Knot by Image Processing
  4. Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus
  5. Identification of the Lignan Nortrachelogenin in Knot and Branch Heartwood of Scots Pine (Pinus sylvestris L.)
  6. Chemical Composition of Lipophilic and Phenolic Constituents of Barks from Pinus nigra, Abies bornmülleriana and Castanea sativa
  7. Pinus pinaster Oleoresin in Plus Trees
  8. Determination of Polyphenolic Content of Bark Extracts for Wood Adhesives
  9. Softwood Bark Pyrolysis Oil-PF Resols. Part 2. Thermal Analysis by DSC and TG
  10. Softwood Bark Pyrolysis Oil-PF Resols. Part 3. Use of Propylene Carbonate as Resin Cure Accelerator
  11. Steam Explosion of Aspen Wood. Characterisation of Reaction Products
  12. Characterization of Black Liquors from Soda-AQ Pulping of Reed Canary Grass (Phalaris arundinacea L.)
  13. Modification of the Nitrogen Content and C:N Ratio of Sitka Spruce Timber by Kiln and Air Drying
  14. High Resolution Measurement of the Surface Layer Moisture Content during Drying of Wood Using a Novel Magnetic Resonance Imaging Technique
  15. Longitudinal Permeability and Diffusivity of Steam in Beech Determined with a Wicke-Kallenbach-Cell
  16. UF/pMDI Wood Adhesives: Networks Blend versus Copolymerization
Downloaded on 2.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/HF.2002.045/html?lang=en
Scroll to top button