Startseite The Riemann–Hilbert Problem in a Domain with Piecewise Smooth Boundaries in Weight Classes of Cauchy Type Integrals with a Density from Variable Exponent Lebesgue Spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Riemann–Hilbert Problem in a Domain with Piecewise Smooth Boundaries in Weight Classes of Cauchy Type Integrals with a Density from Variable Exponent Lebesgue Spaces

  • Vakhtang Kokilashvili und Vakhtang Paatashvili
Veröffentlicht/Copyright: 11. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Georgian Mathematical Journal
Aus der Zeitschrift Band 16 Heft 4

Abstract

The Riemann–Hilbert problem for an analytic function is solved in weighted classes of Cauchy type integrals in a simply connected domain not containing 𝑧 = ∞ and having a density from variable exponent Lebesgue spaces. It is assumed that the domain boundary is a piecewise smooth curve. The solvability conditions are established and solutions are constructed. The solution is found to essentially depend on the coefficients from the boundary condition, the weight, space exponent values at the angular points of the boundary curve and also on the angle values. The non-Fredholmian case is investigated. An application of the obtained results to the Neumann problem is given.

Received: 2008-05-06
Published Online: 2010-03-11
Published in Print: 2009-December

© Heldermann Verlag

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/GMJ.2009.737/pdf?lang=de
Button zum nach oben scrollen