The Riemann–Hilbert Problem in a Domain with Piecewise Smooth Boundaries in Weight Classes of Cauchy Type Integrals with a Density from Variable Exponent Lebesgue Spaces
-
Vakhtang Kokilashvili
and Vakhtang Paatashvili
Abstract
The Riemann–Hilbert problem for an analytic function is solved in weighted classes of Cauchy type integrals in a simply connected domain not containing 𝑧 = ∞ and having a density from variable exponent Lebesgue spaces. It is assumed that the domain boundary is a piecewise smooth curve. The solvability conditions are established and solutions are constructed. The solution is found to essentially depend on the coefficients from the boundary condition, the weight, space exponent values at the angular points of the boundary curve and also on the angle values. The non-Fredholmian case is investigated. An application of the obtained results to the Neumann problem is given.
© Heldermann Verlag
Articles in the same Issue
- On the Necessary and Sufficient Conditions for the Stability of Linear Generalized Ordinary Differential, Linear Impulsive and Linear Difference Systems
- Nonlinear Three-Point Boundary Value Problems for a Class of Impulsive Functional Differential Equations
- Unilateral Contact Problems with Friction for Hemitropic Elastic Solids
- A Periodic Boundary Value Problem for Functional Differential Equations of Higher Order
- The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness
- Stability by Fixed Point Theory for Nonlinear Delay Difference Equations
- On the Rates of Convergence of Chlodovsky–Durrmeyer Operators and their Bézier Variant
- On Nonmeasurable Functions of Two Variables and Iterated Integrals
- Bounded and Vanishing at Infinity Solutions of Nonlinear Differential Systems
- On Functional Equations Connected with Quadrature Rules
- The Riemann–Hilbert Problem in a Domain with Piecewise Smooth Boundaries in Weight Classes of Cauchy Type Integrals with a Density from Variable Exponent Lebesgue Spaces
- A Counterexample on Embedding of Spaces
- On Solutions of a Singular Viscoelastic Equation with an Integral Condition
- Nonbounding 𝑛-C.E. 𝑄-Degrees
- Nonequivalence of Unilateral Strong Differentiation Bases in
Articles in the same Issue
- On the Necessary and Sufficient Conditions for the Stability of Linear Generalized Ordinary Differential, Linear Impulsive and Linear Difference Systems
- Nonlinear Three-Point Boundary Value Problems for a Class of Impulsive Functional Differential Equations
- Unilateral Contact Problems with Friction for Hemitropic Elastic Solids
- A Periodic Boundary Value Problem for Functional Differential Equations of Higher Order
- The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness
- Stability by Fixed Point Theory for Nonlinear Delay Difference Equations
- On the Rates of Convergence of Chlodovsky–Durrmeyer Operators and their Bézier Variant
- On Nonmeasurable Functions of Two Variables and Iterated Integrals
- Bounded and Vanishing at Infinity Solutions of Nonlinear Differential Systems
- On Functional Equations Connected with Quadrature Rules
- The Riemann–Hilbert Problem in a Domain with Piecewise Smooth Boundaries in Weight Classes of Cauchy Type Integrals with a Density from Variable Exponent Lebesgue Spaces
- A Counterexample on Embedding of Spaces
- On Solutions of a Singular Viscoelastic Equation with an Integral Condition
- Nonbounding 𝑛-C.E. 𝑄-Degrees
- Nonequivalence of Unilateral Strong Differentiation Bases in