Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
A regularity result for a class of degenerate Yang-Mills connections in critical dimensions
-
Takeshi Isobe
Veröffentlicht/Copyright:
15. Dezember 2008
Abstract
We show that any weak solution to the p-Yang-Mills equations of Sobolev class W1,p defined on an m-dimensional manifold is W2,p-gauge equivalent to a C1,δ-connection for some 0 < δ < 1 provided p ≥ m/2.
Published Online: 2008-12-15
Published in Print: 2008-November
© de Gruyter 2008
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Inequalities for Euler's gamma function
- Integers without divisors from a fixed arithmetic progression
- Sharp results on the integrability of the derivative of an interpolating Blaschke product
- The Gauss map of pseudo-algebraic minimal surfaces
- Gödel incompleteness in AF C*-algebras
- Quasi-regular Dirichlet forms on Riemannian path and loop spaces
- Divided differences and generalized Taylor series
- A regularity result for a class of degenerate Yang-Mills connections in critical dimensions
Artikel in diesem Heft
- Inequalities for Euler's gamma function
- Integers without divisors from a fixed arithmetic progression
- Sharp results on the integrability of the derivative of an interpolating Blaschke product
- The Gauss map of pseudo-algebraic minimal surfaces
- Gödel incompleteness in AF C*-algebras
- Quasi-regular Dirichlet forms on Riemannian path and loop spaces
- Divided differences and generalized Taylor series
- A regularity result for a class of degenerate Yang-Mills connections in critical dimensions