Article
Licensed
Unlicensed
Requires Authentication
The Gauss map of pseudo-algebraic minimal surfaces
-
Yu Kawakami
Published/Copyright:
December 15, 2008
Abstract
We refine Osserman's argument on the exceptional values of the Gauss map of algebraic minimal surfaces. This gives an effective estimate for the number of exceptional values and the totally ramified value number for a wider class of complete minimal surfaces that includes algebraic minimal surfaces. It also provides a new proof of Fujimoto's theorem for this class, which not only simplifies the proof but also reveals the geometric meaning behind it.
Received: 2006-04-12
Revised: 2007-02-26
Revised: 2007-03-22
Accepted: 2007-05-09
Published Online: 2008-12-15
Published in Print: 2008-November
© de Gruyter 2008
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Inequalities for Euler's gamma function
- Integers without divisors from a fixed arithmetic progression
- Sharp results on the integrability of the derivative of an interpolating Blaschke product
- The Gauss map of pseudo-algebraic minimal surfaces
- Gödel incompleteness in AF C*-algebras
- Quasi-regular Dirichlet forms on Riemannian path and loop spaces
- Divided differences and generalized Taylor series
- A regularity result for a class of degenerate Yang-Mills connections in critical dimensions
Articles in the same Issue
- Inequalities for Euler's gamma function
- Integers without divisors from a fixed arithmetic progression
- Sharp results on the integrability of the derivative of an interpolating Blaschke product
- The Gauss map of pseudo-algebraic minimal surfaces
- Gödel incompleteness in AF C*-algebras
- Quasi-regular Dirichlet forms on Riemannian path and loop spaces
- Divided differences and generalized Taylor series
- A regularity result for a class of degenerate Yang-Mills connections in critical dimensions