Startseite A Bayesian View on Detecting Drifts by Nonparametric Methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Bayesian View on Detecting Drifts by Nonparametric Methods

  • Ansgar Steland
Veröffentlicht/Copyright: 18. Februar 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Stochastics and Quality Control
Aus der Zeitschrift Band 17 Heft 2

Abstract

We study a nonparametric sequential detection procedure, which aims at detecting the first time point where a drift term appears in a stationary process, from a Bayesian perspective. The approach is based on a nonparametric model for the drift, a nonparametric kernel smoother which is used to define the stopping rule, and a performance measure which determines for each smoothing kernel and each given drift the asymptotic accuracy of the method. We look at this approach by parameterizing the drift and putting a prior distribution on the parameter vector. We are able to identify the optimal prior distribution which minimizes the expected performance measure. Consequently, we can judge whether a certain prior distribution yields good or even optimal asymptotic detection. We consider several important special cases where the optimal prior can be calculated explicitly.

Published Online: 2010-02-18
Published in Print: 2002-October

© Heldermann Verlag

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/EQC.2002.177/html
Button zum nach oben scrollen