Startseite Ternary cyclotomic polynomials having a large coefficient
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ternary cyclotomic polynomials having a large coefficient

  • Yves Gallot und Pieter Moree
Veröffentlicht/Copyright: 16. Juni 2009
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2009 Heft 632

Abstract

Let Φn(x) denote the nth cyclotomic polynomial. In 1968 Sister Marion Beiter conjectured that an(k), the coefficient of xk in Φn(x), satisfies |an(k)| ≦ (p + 1)/2 in case n = pqr with p < q < r primes (in this case Φn(x) is said to be ternary). Since then several results towards establishing her conjecture have been proved (for example |an(k)| ≦ 3p/4). Here we show that, nevertheless, Beiter's conjecture is false for every p ≧ 11. We also prove that given any ε > 0 there exist infinitely many triples (pj, qj, rj) with p1 < p2 < ⋯ consecutive primes such that |apjqjrj(nj)| > (2/3 – ε)pj for j ≧ 1.

Received: 2007-12-12
Revised: 2008-03-19
Published Online: 2009-06-16
Published in Print: 2009-July

© Walter de Gruyter Berlin · New York 2009

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2009.052/html?lang=de
Button zum nach oben scrollen