Home Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren
Article
Licensed
Unlicensed Requires Authentication

Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren

  • Christoph Welp , Stefan Siebers , Helmut Ermert and Jürgen Werner
Published/Copyright: December 7, 2006
Become an author with De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 51 Issue 5_6

Abstract

Radiofrequency (RF) ablation using high-frequency current has become an important treatment method for patients with non-resectable liver tumors. Tumor recurrence is associated with tissue cooling in the proximity of large blood vessels. This study investigated the influence of blood flow rate on tissue temperature and lesion size during monopolar RF ablation at a distance of 10 mm from single 4- and 6-mm vessels using two different approaches: 1) an ex vivo blood perfusion circuit including an artificial vessel inserted into porcine liver tissue was developed; and 2) a finite element method (FEM) model was created using a novel simplified modeling technique for large blood vessels. Blood temperatures at the inflow/outflow of the vessel and tissue temperatures at 10 and 20 mm from the electrode tip were measured in the ex vivo set-up. Tissue temperature, blood temperature and lesion size were analyzed under physiological, increased and reduced blood-flow conditions. The results show that changes in blood flow rate in large vessels do not significantly affect tissue temperature and lesion size far away from the vessel. Monopolar ablation could not produce lesions surrounding the vessel due to the strong heat-sink effect. Simulated tissue temperatures correlated well with ex vivo measurements, supporting the FEM model.

Zusammenfassung

Die Radiofrequenzablation mittels hochfrequenten Wechselstroms ist ein Behandlungsverfahren für Patienten mit nicht resezierbaren Lebertumoren. Vereinzelt treten nach der Behandlung erneut Rezidive auf, deren Entstehung auf eine lokale Gewebekühlung durch große Blutgefäße in unmittelbarer Tumornähe zurückgeführt wird. Zur Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gewebetemperaturverteilung und die Läsionsgröße wurden zwei Ansätze gewählt: 1) Ein Perfusionskreislauf mit einem in Schweinelebergewebe (ex vivo) integrierten artifiziellen Blutgefäß wurde entwickelt. 2) Ein Finite-Elemente-Modell der Radiofrequenzablation mit neuem Modellierungsansatz für große Blutgefäße wurde erstellt. Die Bluttemperaturen am Gefäßeintritt und -austritt, die Gewebetemperaturen in einem Abstand von 10 mm und 20 mm zur Applikatorspitze und die Läsionsgröße wurden gemessen (ex vivo Setup) und berechnet (FEM). Dabei wurden drei verschiedene Blutflüsse im Gefäß analysiert: physiologisch, stark erhöht und stark reduziert. Die Ergebnisse zeigen, dass eine Veränderung der Blutflussgeschwindigkeit keinen signifikanten Einfluss auf die Gewebetemperatur in großem Abstand zum Gefäß und auf die Läsionsgröße hat. Mit Hilfe der monopolaren Radiofrequenzablation kann aufgrund der starken Gefäßkühlung (heat sink effect) keine geschlossene Läsionszone um das Gefäß erzielt werden. Die berechneten Gewebetemperaturverteilungen zeigen eine sehr gute Korrelation mit den ex vivo Messergebnissen und stützen damit die Modellierungsmethodik des Finite-Elemente-Modells.


Corresponding author: Christoph Welp, Sauerweg 25, 40629 Düsseldorf, Germany Phone: +49-241-8860575 Fax: +49-241-8860111

References

1 Brinck H, Werner J. Use of vascular and non-vascular models for the assessment of temperature distribution during induced hyperthermia. Int J Hyperthermia1995; 11: 615–628.10.3109/02656739509022494Search in Google Scholar

2 Burdio F, Guemes A, Burdio JM, et al. Hepatic lesion ablation with bipolar saline-enhanced radiofrequency in the audible spectrum. Acad Radiol1999; 6: 680–686.10.1016/S1076-6332(99)80117-2Search in Google Scholar

3 Chinn SB, Lee FT Jr, Kennedy GD, et al. Effect of vascular occlusion on radiofrequency ablation of the liver: results in a porcine model. Am J Roentgenol2001; 176: 789–795.10.2214/ajr.176.3.1760789Search in Google Scholar

4 Curley SA, Izzo F, Delrio P, et al. Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies. Ann Surg1999; 230: 1–8.10.1097/00000658-199907000-00001Search in Google Scholar

5 Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. Radiology1977; 123: 463–474.10.1148/123.2.463Search in Google Scholar

6 Duck FA. Physical properties of tissue. San Diego, CA: Academic Press 1990.10.1016/B978-0-12-222800-1.50009-7Search in Google Scholar

7 Gillams AR, Lees WR. The importance of large vessel proximity in thermal ablation of liver tumours. Radiology1999; 213 (Suppl): 123.Search in Google Scholar

8 Goldberg SN, Solbiati L, Hahn PF, et al. Large-volume tissue ablation with radio frequency by using a clustered, internally cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology1998; 209: 371–370.10.1148/radiology.209.2.9807561Search in Google Scholar

9 Goldberg SN, Kruskal JB, Oliver BS, Clouse ME, Gazelle GS. Percutaneous tumor ablation: increased coagulation by combining radio-frequency ablation and ethanol instillation in a rat breast tumor model. Radiology2000; 217: 827–831.10.1148/radiology.217.3.r00dc27827Search in Google Scholar

10 Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc Interv Radiol1999; 10: 907–916.10.1016/S1051-0443(99)70136-3Search in Google Scholar

11 Goldberg SN, Kamel IR, Kruskal JB, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am J Roentgenol2002; 179: 93–101.10.2214/ajr.179.1.1790093Search in Google Scholar PubMed

12 Goldberg SN, Ahmed M, Gazelle GS, et al. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation – phantom and porcine liver study. Radiology2001; 219: 157–165.10.1148/radiology.219.1.r01ap27157Search in Google Scholar

13 Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol1996; 3: 636–644.10.1016/S1076-6332(96)80188-7Search in Google Scholar

14 Goldberg SN, Hahn PF, Tanabe KK, et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol1998; 9: 101–111.10.1016/S1051-0443(98)70491-9Search in Google Scholar

15 Graham SJ, Chen L, Leitch M, et al. Quantifying tissue damage due to focused ultrasound heating observed by MRI. Magn Reson Med1999; 41: 321–328.10.1002/(SICI)1522-2594(199902)41:2<321::AID-MRM16>3.0.CO;2-9Search in Google Scholar

16 Haemmerich D, Staelin ST, Tungjitkusolmun S, Lee FT Jr, Mahvi DM, Webster JG. Hepatic bipolar radio-frequency ablation between separated multiprong electrodes. IEEE Trans Biomed Eng2001; 48: 1145–1152.10.1109/10.951517Search in Google Scholar

17 Haemmerich D, Lee FT Jr, Schutt DJ, et al. Large-volume radiofrequency ablation of ex vivo bovine liver with multiple cooled cluster electrodes. Radiology2005; 234: 563–568.10.1148/radiol.2342031122Search in Google Scholar

18 Haemmerich D, Chachati L, Wright AS, Mahvi DM, Lee FT Jr, Webster JG. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Trans Biomed Eng2003; 50: 493–499.10.1109/TBME.2003.809488Search in Google Scholar

19 Haemmerich D, Wright AS, Mahvi DM, Lee FT Jr, Webster JG. Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: a finite element study. Med Biol Eng Comput2003; 41: 317–323.10.1007/BF02348437Search in Google Scholar

20 Hüttig GmbH. Hüttig RIWETA Material Selector 4.0. Camburg: Hüttig GmbH 2003.Search in Google Scholar

21 Lagendijk JJW. The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol1982; 27: 17–23.10.1088/0031-9155/27/1/002Search in Google Scholar

22 Liang P, Dong B, Yu X, et al. Computer-aided dynamic simulation of microwave-induced thermal distribution in coagulation of liver cancer. IEEE Trans Biomed Eng2001; 48: 821–829.10.1109/10.930907Search in Google Scholar

23 Lorentzen T. A cooled needle electrode for radiofrequency tissue ablation: thermodynamic aspects of improved performance compared with conventional needle design. Acad Radiol1996; 3: 556–563.10.1016/S1076-6332(96)80219-4Search in Google Scholar

24 Lu DS, Raman SS, Vodopich DJ, Wang, M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs. Am J Roentgenol2002; 178: 47–51.10.2214/ajr.178.1.1780047Search in Google Scholar

25 McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol1996; 3: 418–422.10.1016/S1076-6332(05)80677-4Search in Google Scholar

26 Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg1998; 227: 559–565.10.1097/00000658-199804000-00018Search in Google Scholar

27 Ratcliffe, EH. Thermal conductivities of glass between –150°C and 100°C. In: Glass Technology. Vol. 4. Sheffield: Society of Glass Technology 1963.Search in Google Scholar

28 Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys1984; 10: 787–800.10.1016/0360-3016(84)90379-1Search in Google Scholar

29 Stein T. Untersuchung zur Dosimetrie der hochfrequenzstrom-induzierten interstitiellen Thermotherapie in bipolarer Technik. Dissertation, LMTB. Berlin: Technical University of Berlin 2000.Search in Google Scholar

30 Tungjitkusolmun S, Staelin ST, Haemmerich D, et al. Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng2002; 49: 3–9.10.1109/10.972834Search in Google Scholar PubMed

31 Valvano JW, Cochran JR, Diller KR. Thermal conductivity and diffusivity of biomaterials measured with self-heating thermistors. Int J Thermophys1985; 6: 301–311.10.1007/BF00522151Search in Google Scholar

32 VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. VDI-Wärmeatlas. Berlin: Springer-Verlag 2002.Search in Google Scholar

33 Verein deutscher Eisenhüttenleute. Taschenbuch der Stahl-Eisen-Werkstoffblätter. Vol. 9. Düsseldorf: Stahl-Eisen 1997.Search in Google Scholar

Published Online: 2006-12-07
Published in Print: 2006-12-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Biosignal Processing: various concepts, various applications – but a common drive
  2. Detection of directed information flow in biosignals
  3. Data mining in medical time series
  4. State-space analysis of joint angle kinematics in normal treadmill walking
  5. From diagnostics to therapy – conceptual basis for real-time movement feedback in rehabilitation medicine
  6. Investigations of back muscle fatigue by simultaneous 31P MRS and surface EMG measurements
  7. Application of EMG signals for controlling exoskeleton robots
  8. Processing of physiological signals in automotive research
  9. Tracer kinetic analysis of signal time series from dynamic contrast-enhanced MR imaging
  10. A fiber optic sensor system for control of rate-adaptive cardiac pacemakers and implantable defibrillators / Ein faseroptisches Sensorsystem zur Steuerung von frequenzadaptiven Herzschrittmachern und implantierbaren Defibrillatoren
  11. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren
  12. Determination of oxygen saturation and hematocrit of flowing human blood using two different spectrally resolving sensors / Bestimmung von Sauerstoffsättigung und Hämatokrit an fließendem Blut mit zwei verschiedenen spektralen Sensoren
  13. Karl Fischer titration and coulometry for measurement of water content in small cartilage specimens / Bestimmung des Wassergehalts in kleinen Knorpelproben durch Karl-Fischer-Titration und Coulometrie
  14. Synergistic effects of mixed TiAlV and polyethylene wear particles on TNFα response in THP-1 macrophages / Synergistische Effekte gemischter TiAlV- und Polyethylen-Abriebpartikel auf die TNFα-Antwort in THP-1 Makrophagen
  15. FE-Simulation zur Lokalisierung hoch beanspruchter Bereiche in der Hüftpfanne von Endoprothesen / FE-analysis of surface stresses for the tribological system in total hip prostheses
  16. Partial hemi-resurfacing of the hip joint – a new approach to treat local osteochondral defects? / Gelenkoberflächen-Teilersatz am Hüftgelenk – ein neuer Ansatz zur Behandlung osteochondraler Defekte?
  17. Stellungnahme zu „Der Einfluss von Laserlichtbestrahlung niedriger Leistungsdichte auf einen experimentellen Knorpelschaden im Kniegelenk des Kaninchens: eine in vivo-Untersuchung unter Berücksichtigung makroskopischer, histologischer und immunhistochemischer Veränderungen”; Biomed Tech 2006; 51: 131–138
  18. Contents index volume 51 (2006)
  19. Author index volume 51 (2006)
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2006.067/html
Scroll to top button