Home A fiber optic sensor system for control of rate-adaptive cardiac pacemakers and implantable defibrillators / Ein faseroptisches Sensorsystem zur Steuerung von frequenzadaptiven Herzschrittmachern und implantierbaren Defibrillatoren
Article
Licensed
Unlicensed Requires Authentication

A fiber optic sensor system for control of rate-adaptive cardiac pacemakers and implantable defibrillators / Ein faseroptisches Sensorsystem zur Steuerung von frequenzadaptiven Herzschrittmachern und implantierbaren Defibrillatoren

  • Stefan Müller , Martin Hexamer and Jürgen Werner
Published/Copyright: December 7, 2006
Become an author with De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 51 Issue 5_6

Abstract

Commercially available cardiac pacemakers and implantable cardioverters/defibrillators (ICDs) predominantly use an intracardiac-derived electrocardiogram (ECG) for the detection of arrhythmias. To achieve automatic control of the heart frequency in accordance with cardiovascular strain and improved detection of life-threatening arrhythmias, it is desirable to monitor the heart by an input signal correlated with the hemodynamic state. One possible approach to derive such a signal is to measure the inotropy (mechanical contraction strength of the heart muscle). For this purpose, an optoelectronic measurement system has been designed. The fundamental function of the system has been shown in earlier investigations using an isolated beating pig heart. In this paper the design of two algorithms for use in pacemakers and ICDs based on a fiber optic sensor signal is presented.

Zusammenfassung

Zurzeit auf dem Markt befindliche Herzschrittmacher und implantierbare Defibrillatoren (ICD) verwenden zur Erkennung von Arrhythmien überwiegend das im Herzen abgeleitete EKG. Um eine der Herz-Kreislauf-Belastung angepasste Regelung der Herzfrequenz bzw. eine verbesserte Erkennung von lebensbedrohlichen Arrhythmien zu ermöglichen, ist es wünschenswert, den hämodynamischen Status des Herzens als weitere Eingangsgröße messen zu können. Ein möglicher Ansatz zur Bestimmung einer solchen Größe ist die Messung der Inotropie (mechanische Kontraktionskraft des Herzmuskels). Zu diesem Zweck wurde ein optoelektronisches Messsystem entwickelt. Die grundlegende Funktion des Systems konnte in vorangegangenen Untersuchungen an isoliert schlagenden Schweineherzen nachgewiesen werden. In dem vorliegenden Beitrag werden zwei Algorithmen beschrieben, die basierend auf dem faseroptischen Sensorsignal die Steuerung von frequenzadaptiven Schrittmachern und ICD ermöglichen.


Corresponding author: PD Dr. rer. nat. Martin Hexamer, Medical Faculty, Department for Biomedical Engineering, Ruhr University, MA 4/63, 44780 Bochum, Germany Phone: +49-234-3224922 Fax: +49-234-3214117

References

1 Alsabrook G, Lazio L, Lasater M. Noninvasive assessment of hemodynamic characteristics in an episode of sustained narrow-complex tachycardia. Am J Crit Care1999; 8: 243–245.10.4037/ajcc1999.8.4.243Search in Google Scholar

2 Baron SB, Huang SK, Comess A. Left ventricular function during stable sustained ventricular tachycardia. Hemodynamic and echo-Doppler analysis. Chest1989; 96: 275–280.10.1378/chest.96.2.275Search in Google Scholar

3 Bolz A, Lang V, Merkly T, Popp T, Schaldach M. Evaluation of hemodynamic sensors for implantable defibrillators. Biomed Tech1997; 42 (Suppl): 263–264.10.1515/bmte.1997.42.s2.263Search in Google Scholar

4 Clementy J. The dual chamber rate responsive pacing system driven by contractility: final assessment after 1-year follow-up. European PEA Clinical Investigation Group. Pacing Clin Electrophysiol1998; 21: 2192–2197.10.1111/j.1540-8159.1998.tb01151.xSearch in Google Scholar

5 Cohen TJ, Veltri JJ, Lattuca JJ, Mower MM. Hemodynamic responses to rapid pacing: a model for tachycardia differentiation. Pacing Clin Electrophysiol1988; 11: 1522–1528.10.1111/j.1540-8159.1988.tb06268.xSearch in Google Scholar

6 Kloppe A, Hoeland K, Hexamer M, et al. A new test device for cardiac stimulation and sensor technology. Med Biol Eng Comput1999; 37: 708–709.Search in Google Scholar

7 Kolettis T, Saksena S, Mathew P, Krol RB, Giorgberidze I, Bhambhani G. Right and left ventricular hemodynamic performance during sustained ventricular tachycardia. Am J Cardiol1997; 79: 323–327.10.1016/S0002-9149(96)00755-2Search in Google Scholar

8 Müller S, Kloppe A, Mügge A, Werner J. Fiber optic measurement of myocardial contraction-correlation of the signal with hemodynamic values. Biomed Tech2002; 47 (Suppl): 527–529.10.1515/bmte.2002.47.s1b.527Search in Google Scholar

9 Müller S, Kloppe A, Mügge A, Werner J. A fiber optic sensor system for cardiac monitoring and electrotherapy. Biomed Tech2004; 49: 311–315.10.1515/BMT.2004.058Search in Google Scholar PubMed

10 Rickards AF, Bombardini T, Corbucci G, Plicchi G. An implantable intracardiac accelerometer for monitoring myocardial contractility. The Multicenter PEA Study Group. Pacing Clin Electrophysiol1996; 19: 2066–2071.10.1111/j.1540-8159.1996.tb03280.xSearch in Google Scholar PubMed

11 Schaldach M, Hutten H. Intracardiac impedance to determine sympathetic activity in rate responsive pacing. Pacing Clin Electrophysiol1992; 15: 1778–1786.10.1111/j.1540-8159.1992.tb02968.xSearch in Google Scholar PubMed

12 Urbaszek A, Pichlmaier AM, Schaldach M, Hutten H. Measuring intracardiac impedance for detecting sympathetic nerve activity in frequency-adjustment electrostimulation. 1. Biomedical technical principles. Biomed Tech1992; 37: 155–161.10.1515/bmte.1992.37.7-8.155Search in Google Scholar

13 Wagner SM, Bayer R, Frohlich R, Lang V, Bolz A, Schaldach M. Blood flow measurement for implantable devices. Experimental results. Biomed Tech1998; 43 (Suppl): 134–135.10.1515/bmte.1998.43.s1.134Search in Google Scholar PubMed

Published Online: 2006-12-07
Published in Print: 2006-12-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Biosignal Processing: various concepts, various applications – but a common drive
  2. Detection of directed information flow in biosignals
  3. Data mining in medical time series
  4. State-space analysis of joint angle kinematics in normal treadmill walking
  5. From diagnostics to therapy – conceptual basis for real-time movement feedback in rehabilitation medicine
  6. Investigations of back muscle fatigue by simultaneous 31P MRS and surface EMG measurements
  7. Application of EMG signals for controlling exoskeleton robots
  8. Processing of physiological signals in automotive research
  9. Tracer kinetic analysis of signal time series from dynamic contrast-enhanced MR imaging
  10. A fiber optic sensor system for control of rate-adaptive cardiac pacemakers and implantable defibrillators / Ein faseroptisches Sensorsystem zur Steuerung von frequenzadaptiven Herzschrittmachern und implantierbaren Defibrillatoren
  11. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation / Untersuchung des Einflusses der Blutflussgeschwindigkeit auf die Gefäßkühlung bei der Radiofrequenzablation von Lebertumoren
  12. Determination of oxygen saturation and hematocrit of flowing human blood using two different spectrally resolving sensors / Bestimmung von Sauerstoffsättigung und Hämatokrit an fließendem Blut mit zwei verschiedenen spektralen Sensoren
  13. Karl Fischer titration and coulometry for measurement of water content in small cartilage specimens / Bestimmung des Wassergehalts in kleinen Knorpelproben durch Karl-Fischer-Titration und Coulometrie
  14. Synergistic effects of mixed TiAlV and polyethylene wear particles on TNFα response in THP-1 macrophages / Synergistische Effekte gemischter TiAlV- und Polyethylen-Abriebpartikel auf die TNFα-Antwort in THP-1 Makrophagen
  15. FE-Simulation zur Lokalisierung hoch beanspruchter Bereiche in der Hüftpfanne von Endoprothesen / FE-analysis of surface stresses for the tribological system in total hip prostheses
  16. Partial hemi-resurfacing of the hip joint – a new approach to treat local osteochondral defects? / Gelenkoberflächen-Teilersatz am Hüftgelenk – ein neuer Ansatz zur Behandlung osteochondraler Defekte?
  17. Stellungnahme zu „Der Einfluss von Laserlichtbestrahlung niedriger Leistungsdichte auf einen experimentellen Knorpelschaden im Kniegelenk des Kaninchens: eine in vivo-Untersuchung unter Berücksichtigung makroskopischer, histologischer und immunhistochemischer Veränderungen”; Biomed Tech 2006; 51: 131–138
  18. Contents index volume 51 (2006)
  19. Author index volume 51 (2006)
Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2006.066/html
Scroll to top button