Home Circadian and ultradian rhythms in heart rate variability
Article
Licensed
Unlicensed Requires Authentication

Circadian and ultradian rhythms in heart rate variability

  • Phyllis K. Stein , Peter P. Domitrovich , Eric J. Lundequam , Stephen P. Duntley , Kenneth E. Freedland and Robert M. Carney
Published/Copyright: October 25, 2006
Become an author with De Gruyter Brill
Biomedical Engineering / Biomedizinische Technik
From the journal Volume 51 Issue 4

Abstract

Aim: Heart rate variability (HRV) patterns reflect the changing effect of sympathetic and parasympathetic modulation of the autonomic nervous system. While overall and circadian heart rate (HR) and HRV are well characterized by traditional measures, there is currently no method to measure ultradian cycles of HR and HRV.

Materials and methods: HR/HRV for each 2-min interval was calculated using normal-to-normal interbeat intervals from overnight polysomnographic ECGs in 113 subjects, aged 58±10 years (65 male, 48 female). HR, SDNN2, high-frequency power (HF) and the LF (low-frequency power)/HF ratio were plotted. A curve-fitting algorithm, developed in MatLab, identified cyclic patterns of HR/HRV and extracted parameters to characterize them. Results were compared for older vs. younger patients, males vs. females, with vs. without severe sleep apnea, and for the upper and lower half of sleep efficiency.

Results: Ultradian patterns for different HR/HRV indices had variable correspondences with each other and none could be considered surrogates. Differences were seen for all comparison groups, but no one marker was consistently different across comparisons.

Conclusion: Each HR/HRV parameter has its own rhythm, and the correspondence between these rhythms varies greatly across subjects. Quantification of ultradian patterns of HRV is feasible and could provide new insights into autonomic physiology.


Corresponding author: Phyllis K. Stein, PhD, Washington University School of Medicine HRV Lab, 4625, Lindell Blvd, Suite 402, St. Louis, MO 63108, USA Phone: +1-314-286-1350 Fax: +1-314-286-1394

References

1 Kemp B, Varri A, Rosa AC, Neilsen KD, Gade J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol1992; 82: 391–393.10.1016/0013-4694(92)90009-7Search in Google Scholar

2 Stein PK, Kleiger RE. Insights from the study of heart rate variability. Annu Rev Med1999; 50: 249–261.10.1146/annurev.med.50.1.249Search in Google Scholar PubMed

Published Online: 2006-10-25
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. ESGCO 2006 Conference and Meeting of the European Study Group on Cardiovascular Oscillations, Jena, Germany, May 15–17, 2006
  2. Cardiovascular Oscillations: from methods and models to clinical applications
  3. Circadian and ultradian rhythms in heart rate variability
  4. Influence of age, body mass index, and blood pressure on the carotid intima-media thickness in normotensive and hypertensive patients
  5. Multivariate and multidimensional analysis of cardiovascular oscillations in patients with heart failure
  6. Multivariate and multiorgan analysis of cardiorespiratory variability signals: the CAP sleep case
  7. Role of the autonomic nervous system in generating non-linear dynamics in short-term heart period variability
  8. Non-linear dynamic analysis of the cardiac rhythm during transient myocardial ischemia
  9. Complex autonomic dysfunction in cardiovascular, intensive care, and schizophrenic patients assessed by autonomic information flow
  10. Low HRV entropy is strongly associated with myocardial infarction
  11. Revisiting the potential of time-domain indexes in short-term HRV analysis
  12. Fractal dimension in health and heart failure
  13. Spatiotemporal correlation analyses: a new procedure for standardisation of DC magnetocardiograms
  14. Changes in heart rate variability of athletes during a training camp
  15. The missing link between cardiovascular rhythm control and myocardial cell modeling
  16. Model of the sino-atrial and atrio-ventricular nodes of the conduction system of the human heart
  17. Modelling long-term heart rate variability: an ARFIMA approach
  18. Clinical correlates of non-linear indices of heart rate variability in chronic heart failure patients
  19. Recurrence analysis of nocturnal heart rate in sleep apnea patients
  20. Normalized correlation dimension for heart rate variability analysis
  21. Complexity of heart rate fluctuations in near-term sheep and human fetuses during sleep
  22. Differences between heart rate and blood pressure variability in schizophrenia
  23. Influence of sympathetic vascular regulation on heart-rate scaling structure: spinal cord lesion as a model of progressively impaired autonomic control
  24. Increase in regularity of fetal heart rate variability with age
  25. Fetal heart rate variability in growth restricted fetuses
  26. Frequency modulation between low- and high-frequency components of the heart rate variability spectrum
  27. Mixed predictability and cross-validation to assess non-linear Granger causality in short cardiovascular variability series
  28. Assessment of spatial organization in the atria during paroxysmal atrial fibrillation and adrenergic stimulation
  29. Attenuated autonomic function in multiple organ dysfunction syndrome across three age groups
  30. Central vasopressin V1a and V1b receptors modulate the cardiovascular response to air-jet stress in conscious rats
  31. Heart rate asymmetry by Poincaré plots of RR intervals
  32. Analyses of cardiovascular oscillations for enhanced diagnosis and risk stratification in cardiac diseases and disorders
Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BMT.2006.026/html
Scroll to top button