Startseite Lebenswissenschaften Evolutionary selection pressure and family relationships among connexin genes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evolutionary selection pressure and family relationships among connexin genes

  • Véronique Cruciani und Svein-Ole Mikalsen
Veröffentlicht/Copyright: 5. März 2007
Biological Chemistry
Aus der Zeitschrift Band 388 Heft 3

Abstract

We suggest an extension of connexin orthology relationships across the major vertebrate lineages. We first show that the conserved domains of mammalian connexins (encoding the N-terminus, four transmembrane domains and two extracellular loops) are subjected to a considerably more strict selection pressure than the full-length sequences or the variable domains (the intracellular loop and C-terminal tail). Therefore, the conserved domains are more useful for the study of family relationships over larger evolutionary distances. The conserved domains of connexins were collected from chicken, Xenopus tropicalis, zebrafish, pufferfish, green spotted pufferfish, Ciona intestinalis and Halocynthia pyriformis (two tunicates). A total of 305 connexin sequences were included in this analysis. Phylogenetic trees were constructed, from which the orthologies and the presumed evolutionary relationships between the sequences were deduced. The tunicate connexins studied had the closest, but still distant, relationships to vertebrate connexin36, 39.2, 43.4, 45 and 47. The main structure in the connexin family known from mammals pre-dates the divergence of bony fishes, but some additional losses and gains of connexin sequences have occurred in the evolutionary lineages of subsequent vertebrates. Thus, the connexin gene family probably originated in the early evolution of chordates, and underwent major restructuring with regard to gene and subfamily structures (including the number of genes in each subfamily) during early vertebrate evolution.

:

Corresponding author

References

Alexopoulos, H., Böttger, A., Fischer, S., Levin, A., Wolf, A., Fujisawa, T., Hayakawa, S., Gojobori, T., Davies, J.A., David, C.N., et al. (2004). Evolution of gap junctions: the missing link? Curr. Biol.14, R879–R880.10.1016/j.cub.2004.09.067Suche in Google Scholar

Baldauf, S.L. (2003). Phylogeny for the faint of heart: a tutorial. Trends Genet.19, 345–351.10.1016/S0168-9525(03)00112-4Suche in Google Scholar

Bennett, M.V., and Zukin, R.S. (2004). Electrical coupling and neuronal synchronization in the mammalian brain. Neuron41, 495–511.10.1016/S0896-6273(04)00043-1Suche in Google Scholar

Bennett, M.V.L., Barrio, L.C., Bargiello, T.A., Spray, D.C., Hertzberg, E., and Sáez, J.C. (1991). Gap junctions: new tools, new answers, new questions. Neuron6, 305–320.10.1016/0896-6273(91)90241-QSuche in Google Scholar

Bennett, M.V.L., Zheng, X., and Sogin, M.L. (1994). The connexins and their family tree. Soc. Gen. Physiol. Ser.49, 223–233.Suche in Google Scholar

Bierne, N., and Eyre-Walker, A. (2003). The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics165, 1587–1597.10.1093/genetics/165.3.1587Suche in Google Scholar

Burke, R.D., Angerer, L.M., Elphick, M.R., Humphrey, G.W., Yaguchi, S., Kiyama, T., Liang, S., Mu, X., Agca, C., Klein, W.H., et al. (2006). A genomic view of the sea urchin nervous system. Dev. Biol.300, 434–460.10.1016/j.ydbio.2006.08.007Suche in Google Scholar

Costello, J.F., and Plass, C. (2001). Methylation matters. J. Med. Genet.38, 285–303.10.1136/jmg.38.5.285Suche in Google Scholar

Cruciani, V., and Mikalsen, S.-O. (2002). Connexins, gap junctional intercellular communication and kinases. Biol. Cell94, 433–443.10.1016/S0248-4900(02)00014-XSuche in Google Scholar

Cruciani, V., and Mikalsen, S.-O. (2005). The connexin gene family in mammals. Biol. Chem.386, 325–332.10.1515/BC.2005.039Suche in Google Scholar PubMed

Cruciani, V., and Mikalsen, S.O. (2006). The vertebrate connexin family. Cell Mol. Life Sci.63, 1125–1140.10.1007/s00018-005-5571-8Suche in Google Scholar PubMed

Cruciani, V., Heintz, K.-M., Husøy, T., Hovig, E., Warren, D.J., and Mikalsen, S.-O. (2004). The detection of hamster connexins: a comparison of expression profiles with wild- type mouse and the cancer-prone Min mouse. Cell Commun. Adhes.11, 155–171.10.1080/15419060500242877Suche in Google Scholar

Curtin, K.D., Zhang, Z., and Wyman, R.J. (1999). Drosophila has several genes for gap junction proteins. Gene232, 191–201.10.1016/S0378-1119(99)00123-7Suche in Google Scholar

de Boer, T.P. and Van der Heyden, M.A.G. (2005). Xenopus connexins: how frogs bridge the gap. Differentiation73, 330–340.10.1111/j.1432-0436.2005.00026.xSuche in Google Scholar

Delsuc, F., Brinkmann, H., Chourrout, D., and Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature439, 965–968.10.1038/nature04336Suche in Google Scholar

Douzery, E.J., Snell, E.A., Bapteste, E., Delsuc, F., and Philippe, H. (2004). The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc. Natl. Acad. Sci. USA101, 15386–15391.10.1073/pnas.0403984101Suche in Google Scholar

Duret, L., and Mouchiroud, D. (2000). Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol.17, 68–74.10.1093/oxfordjournals.molbev.a026239Suche in Google Scholar

Eastman, S.D., Chen, T.H., Falk, M.M., Mendelson, T.C., and Iovine, M.K. (2006). Phylogenetic analysis of three complete gap junction gene families reveals lineage-specific duplications and highly supported gene classes. Genomics87, 265–274.10.1016/j.ygeno.2005.10.005Suche in Google Scholar

Fitch, W.M. (1970). Distinguishing homologous from analogous proteins. Syst. Zool.19, 99–113.10.2307/2412448Suche in Google Scholar

Fitch, W.M. (2000). Homology. A personal view on some of the problems. Trends Genet.16, 227–231.10.1016/S0168-9525(00)02005-9Suche in Google Scholar

Fraser, S.E., Green, C.R., Bode, H.R., and Gilula, N.B. (1987). Selective disruption of gap junctional communication interferes with a patterning process in Hydra. Science237, 49–55.10.1126/science.3037697Suche in Google Scholar PubMed

Giannelli, F. and Green, P.M. (2000). The X chromosome and the rate of deleterious mutations in humans. Am. J. Hum. Genet.67, 515–517.10.1086/303010Suche in Google Scholar

Gimlich, R.L., Kumar, N.M., and Gilula, N.B. (1990). Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J. Cell Biol.110, 597–605.10.1083/jcb.110.3.597Suche in Google Scholar

Gu, X., Wang, Y., and Gu, J. (2002). Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution. Nat. Genet.31, 205–209.10.1038/ng902Suche in Google Scholar

Hendy, M.D., and Penny, D. (1989). A framework for the quantitative study of evolutionary trees. Syst. Zool.38, 297–309.10.2307/2992396Suche in Google Scholar

Hombach, S., Janssen-Bienhold, U., Söhl, G., Schubert, T., Büssow, H., Ott, T., Weiler, R., and Willecke, K. (2004). Functional expression of connexin57 in horizontal cells of the mouse retina. Eur. J. Neurosci.19, 2633–2640.10.1111/j.0953-816X.2004.03360.xSuche in Google Scholar

Hua, V.B., Chang, A.B., Tchieu, J.H., Kumar, N.M., Nielsen, P.A., and Saier, M.H., Jr. (2003). Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J. Membr. Biol.194, 59–76.10.1007/s00232-003-2026-8Suche in Google Scholar

Hurst, L.D. (2002). The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet.18, 486–487.10.1016/S0168-9525(02)02722-1Suche in Google Scholar

Jeffery, W.R., Strickler, A.G., and Yamamoto, Y. (2004). Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature431, 696–699.10.1038/nature02975Suche in Google Scholar

Kanno, L., and Loewenstein, W.R. (1964). Intercellular diffusion. Science143, 959–960.10.1126/science.143.3609.959Suche in Google Scholar

Kumar, N.M., and Gilula, N.B. (1992). Molecular biology and genetics of gap junction channels. Semin. Cell Biol.3, 3–16.10.1016/S1043-4682(10)80003-0Suche in Google Scholar

Kumar, S., and Hedges, S.B. (1998). A molecular timescale for vertebrate evolution. Nature392, 917–920.10.1038/31927Suche in Google Scholar

Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform.5, 150–163.10.1093/bib/5.2.150Suche in Google Scholar

Lin, J.H., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q., Willecke, K., and Nedergaard, M. (2003). Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci.23, 430–441.10.1523/JNEUROSCI.23-02-00430.2003Suche in Google Scholar

Loewenstein, W.R. (1979). Junctional intercellular communication and the control of growth. Biochim. Biophys. Acta560, 1–65.10.1016/0304-419X(79)90002-7Suche in Google Scholar

Mesnil, M. (2002). Connexins and cancer. Biol. Cell94, 493–500.10.1016/S0248-4900(02)00025-4Suche in Google Scholar

Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.10.1038/nature01262Suche in Google Scholar

Nei, M., and Kumar, S. (2000). Molecular Evolution and Phylogenetics (Oxford, UK: Oxford University Press).Suche in Google Scholar

Nunn, R.S., Macke, T.J., Olson, A.J., and Yeager, M. (2001). Transmembrane α-helices in the gap junction membrane channel: systematic search of packing models based on the pair potential function. Microsc. Res. Tech.52, 344–351.10.1002/1097-0029(20010201)52:3<344::AID-JEMT1018>3.0.CO;2-4Suche in Google Scholar

O'Brien, J., Al-Ubaidi, M.R., and Ripps, H. (1996). Connexin 35: a gap-junctional protein expressed preferentially in the skate retina. Mol. Biol. Cell7, 233–243.10.1091/mbc.7.2.233Suche in Google Scholar

Okamura, Y., Nishino, A., Murata, Y., Nakajo, K., Iwasaki, H., Ohtsuka, Y., Tanaka-Kunishima, M., Takahashi, N., Hara, Y., Yoshida, T., et al. (2005). Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiol. Genomics22, 269–282.10.1152/physiolgenomics.00229.2004Suche in Google Scholar

Panopoulou, G., Hennig, S., Groth, D., Krause, A., Poustka, A.J., Herwig, R., Vingron, M., and Lehrach, H. (2003). New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res.13, 1056–1066.10.1101/gr.874803Suche in Google Scholar

Phelan, P., and Starich, T.A. (2001). Innexins get into the gap. BioEssays23, 388–396.10.1002/bies.1057Suche in Google Scholar PubMed

Risek, B., Guthrie, S., Kumar, N., and Gilula, N.B. (1990). Modulation of gap junction transcript and protein expression during pregnancy in the rat. J. Cell Biol.110, 269–282.10.1083/jcb.110.2.269Suche in Google Scholar PubMed PubMed Central

Sáez, J.C., Berthoud, V.M., Brañes, M.C., Martínez, A.D., and Beyer, E.C. (2003). Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev.83, 1359–1400.10.1152/physrev.00007.2003Suche in Google Scholar PubMed

Sasakura, Y., Shoguchi, E., Takatori, N., Wada, S., Meinertzhagen, I.A., Satou, Y., and Satoh, N. (2003). A genome-wide survey of developmentally relevant genes in Ciona intestinalis. X. Genes for cell junctions and extracellular matrix. Dev. Genes Evol.213, 303–313.Suche in Google Scholar

Sitnikova, T., Rzhetsky, A., and Nei, M. (1995). Interior-branch and bootstrap tests of phylogenetic trees. Mol. Biol. Evol.12, 319–333.Suche in Google Scholar

Söhl, G., and Willecke, K. (2003). An update on connexin genes and their nomenclature in mouse and man. Cell Commun. Adhes.10, 173–180.10.1080/cac.10.4-6.173.180Suche in Google Scholar PubMed

Stoker, M.G.P. (1967). Transfer of growth inhibition between normal and virus-transformed cells: autoradiographic studies using marked cells. J. Cell Sci.2, 293–304.10.1242/jcs.2.3.293Suche in Google Scholar PubMed

Sved, J., and Bird, A. (1990). The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci. USA87, 4692–4696.10.1073/pnas.87.12.4692Suche in Google Scholar PubMed PubMed Central

Tamura, K., and Kumar, S. (2002). Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol. Biol. Evol.19, 1727–1736.10.1093/oxfordjournals.molbev.a003995Suche in Google Scholar PubMed

Taylor, J.S., Braasch, I., Frickey, T., Meyer, A., and Van de Peer, Y. (2003). Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res.13, 382–390.10.1101/gr.640303Suche in Google Scholar PubMed PubMed Central

Theissen, G. (2002). Secret life of genes. Nature415, 741.Suche in Google Scholar

Vandepoele, K., De Vos, W., Taylor, J.S., Meyer, A., and Van de Peer, Y. (2004). Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl. Acad. Sci. USA101, 1638–1643.10.1073/pnas.0307968100Suche in Google Scholar PubMed PubMed Central

Wei, C.-J., Xu, X., and Lo, C.W. (2004). Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol.20, 811–838.10.1146/annurev.cellbio.19.111301.144309Suche in Google Scholar PubMed

White, T.W., Wang, H., Mui, R., Litteral, J., and Brink, P.R. (2004). Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett.577, 42–48.10.1016/j.febslet.2004.09.071Suche in Google Scholar

Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Güldenagel, M., Deutsch, U., and Söhl, G. (2002). Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem.383, 725–737.10.1515/BC.2002.076Suche in Google Scholar

Yoshizaki, G., Patiño, R., and Thomas, P. (1994). Connexin messenger ribonucleic acids in the ovary of Atlantic croaker: molecular cloning and characterization, hormonal control, and correlation with appearance of oocyte maturational competence. Biol. Reprod.51, 493–503.10.1095/biolreprod51.3.493Suche in Google Scholar

Zhang, J. (2003). Evolution by gene duplication: an update. Trends Ecol. Evol.18, 292–298.10.1016/S0169-5347(03)00033-8Suche in Google Scholar

Zhang, L., and Li, W.H. (2004). Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol. Biol. Evol.21, 236–239.10.1093/molbev/msh010Suche in Google Scholar PubMed

Published Online: 2007-03-05
Published in Print: 2007-03-01

©2007 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Supplementary material to the paper “Evolutionary selection pressure and family relationships among connexin genes”
  2. Evolutionary selection pressure and family relationships among connexin genes
  3. Characterization of the large subunit of EcoHK31I methyltransferase by structural modeling and mutagenesis
  4. Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds
  5. Maximal Ca2+i stimulation of cardiac Na+/Ca2+ exchange requires simultaneous alkalinization and binding of PtdIns-4,5-P2 to the exchanger
  6. A highly conserved protein secreted by the prostate cancer cell line PC-3 is expressed in benign and malignant prostate tissue
  7. Properties and partial purification of sialate-O-acetyltransferase from bovine submandibular glands
  8. Raft association and lipid droplet targeting of flotillins are independent of caveolin
  9. On the presence of C2-ceramide in mammalian tissues: possible relationship to etherphospholipids and phosphorylation by ceramide kinase
  10. Specific inhibition of interleukin-13 activity by a recombinant human single-chain immunoglobulin domain directed against the IL-13 receptor α1 chain
  11. Effects of disease-modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S
  12. Compartmentalised expression of meprin in small intestinal mucosa: enhanced expression in lamina propria in coeliac disease
  13. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins
  14. Transgenic mouse brains for the evaluation and quality control of BSE tests
Heruntergeladen am 19.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2007.028/pdf
Button zum nach oben scrollen