Startseite Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Apoptotic DNA fragmentation is not related to the phosphorylation state of histone H1

  • Wiebke Goebel , Natalie Obermeyer , Nadja Bleicher , Martin Kratzmeier , Hans-Jörg Eibl , Detlef Doenecke und Werner Albig
Veröffentlicht/Copyright: 29. Januar 2007
Biological Chemistry
Aus der Zeitschrift Band 388 Heft 2

Abstract

Changes in chromatin structure, histone phosphorylation and cleavage of DNA into nucleosome-size fragments are characteristic features of apoptosis. Since H1 histones bind to the site of DNA cleavage between nucleosomal cores, the question arises as to whether the state of H1 phosphorylation influences the rate of internucleosomal cleavage. Here, we tested the relation between DNA fragmentation and H1 phosphorylation both in cultured cells and in vitro. In Jurkat cells, hyperosmotic mannitol concentration resulted in apoptosis, including nucleosomal fragmentation, whereas apoptosis induction by increased NaCl concentration was not accompanied by DNA fragmentation. However, both treatments induced dephosphorylation of H1 histones. In contrast, treatment of Raji cells with alkylphosphocholine led to induction of apoptosis with internucleosomal fragmentation, albeit without notable histone H1 dephosphorylation. These results demonstrate that dephosphorylation of H1 histones is neither a prerequisite for nor a consequence of internucleosomal cleavage. Moreover, we observed with an in vitro assay that the known enhancing effect of H1 histones on the activity of the apoptosis-induced endonuclease DFF40 is independent of the subtype or the phosphorylation state of the linker histone.

:

Corresponding author

References

Ajiro, K. (2000). Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. J. Biol. Chem.275, 439–443.10.1074/jbc.275.1.439Suche in Google Scholar

Albig, W. and Entian, K.D. (1988). Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene15, 141–152.10.1016/0378-1119(88)90320-4Suche in Google Scholar

Albig, W., Runge, D.M., Kratzmeier, M., and Doenecke, D. (1998). Heterologous expression of human H1 histones in yeast. FEBS Lett.435, 245–250.10.1016/S0014-5793(98)01084-9Suche in Google Scholar

Allan, J., Mitchell, T., Harborne, N., Bohm, L., and Crane-Robinson, C. (1986). Roles of H1 domains in determining higher order chromatin structure and H1 location. J. Mol. Biol.187, 591–601.10.1016/0022-2836(86)90337-2Suche in Google Scholar

Bortner, C.D. and Cidlowski, J.A. (1996). Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am. J. Physiol.271, C950–C961.10.1152/ajpcell.1996.271.3.C950Suche in Google Scholar PubMed

Bradbury, E.M., Inglis, R.J., and Matthews, H.R. (1974). Control of cell division by very lysine rich histone (F1) phosphorylation. Nature247, 257–261.10.1038/247257a0Suche in Google Scholar PubMed

Buttinelli, M., Panetta, G., Rhodes, D., and Travers, A. (1999). The role of histone H1 in chromatin condensation and transcriptional repression. Genetica106, 117–124.10.1023/A:1003745315540Suche in Google Scholar

Cerf, C., Lippens, G., Ramakrishnan, V., Muyldermans, S., Segers, A., Wyns, L., Wodak, S.J., and Hallenga, K. (1994). Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5. Biochemistry33, 11079–11086.10.1021/bi00203a004Suche in Google Scholar PubMed

Doenecke, D., Albig, W., Bouterfa, H., and Drabent, B. (1994). Organization and expression of H1 histone and H1 replacement histone genes. J. Cell. Biochem.54, 423–431.10.1002/jcb.240540409Suche in Google Scholar PubMed

Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature391, 393–396.10.1038/34112Suche in Google Scholar PubMed

Happel, N., Schulze, E., and Doenecke, D. (2005a). Characterisation of human histone H1x. Biol. Chem.386, 541–551.10.1515/BC.2005.064Suche in Google Scholar

Happel, N., Sommer, A., Hänecke, K., Albig, W., and Doenecke, D. (2005b). Topoisomerase inhibitor induced dephosphorylation of H1 and H3 histones as a consequence of cell cycle arrest. J. Cell. Biochem.95, 1235–1247.10.1002/jcb.20494Suche in Google Scholar

Jerzmanowski, A. and Cole, R.D. (1992). Partial displacement of histone H1 from chromatin is required before it can be phosphorylated by mitotic H1 kinase in vitro. J. Biol. Chem.267, 8514–8520.10.1016/S0021-9258(18)42474-XSuche in Google Scholar

Kawabata, Y., Hirokawa, M., Kitabayashi, A., Horiuchi, T., Kuroki, J., and Miura, A.B. (1999). Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: a novel mechanism of nuclear apoptosis resistance. Blood94, 3523–3530.10.1182/blood.V94.10.3523.422k07_3523_3530Suche in Google Scholar

Kerr, J.F. (1971). Shrinkage necrosis: a distinct mode of cellular death. J. Pathol.105, 13–20.10.1002/path.1711050103Suche in Google Scholar PubMed

Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic physiological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer26, 239–257.10.1038/bjc.1972.33Suche in Google Scholar PubMed PubMed Central

Konstantinov, S.M., Eibl, H., and Berger, M.R. (1998) Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells. Cancer Chemother. Pharmacol.41, 210–216.Suche in Google Scholar

Kratzmeier, M., Albig, W., Meergans, T., and Doenecke, D. (1999). Changes in protein pattern of H1 histones associated with apoptotic DNA fragmentation. Biochem. J.337, 319–327.10.1042/bj3370319Suche in Google Scholar

Kratzmeier, M., Albig, W., Hänecke, K., and Doenecke, D. (2000). Rapid dephosphorylation of H1 histones after apoptosis induction. J. Biol. Chem.275, 30478–30486.10.1074/jbc.M003956200Suche in Google Scholar PubMed

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685.10.1038/227680a0Suche in Google Scholar PubMed

Lindner, H., Helliger, W., Sarg, B., and Meraner, C. (1995). Effect of buffer composition on the migration order and separation of histone H1 subtypes. Electrophoresis16, 604–610.10.1002/elps.1150160197Suche in Google Scholar PubMed

Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T., and Wang, X. (1998). The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA95, 8461–8466.10.1073/pnas.95.15.8461Suche in Google Scholar

Meergans, T., Albig, W., and Doenecke, D. (1997). Varied expression patterns of human H1 histone genes in different cell lines. DNA Cell Biol.16, 1041–1049.10.1089/dna.1997.16.1041Suche in Google Scholar

Mizzen, C.A., Dou, Y., Liu, Y., Cook, R.G., Gorovsky, M.A., and Allis, C.D. (1991). Identification and mutation of phosphorylation sites in a linker histone. Phosphorylation of macronuclear H1 is not essential for viability in tetrahymena. J. Biol. Chem.274, 14533–14536.Suche in Google Scholar

Oberhammer, F., Bursch, W., Tiefenbacher, R., Froschl, G., Pavelka, M., Purchio, T., and Schulte-Hermann, R. (1993). Apoptosis is induced by transforming growth factor-β1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology18, 1238–1246.10.1002/hep.1840180533Suche in Google Scholar

Pruss, D., Bartholomew, B., Persinger, J., Hayes, J., Arents, G., Moudrianakis, E.N., and Wolffe, A.P. (1996). An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science274, 614–617.10.1126/science.274.5287.614Suche in Google Scholar

Rasola, A., Farhahi Far, D., Hofmann, P., and Rossi, B. (1999). Lack of internucleosomal DNA fragmentation is related to Cl- efflux impairment in hematopoietic cell apoptosis. FASEB J.13, 1711–1723.10.1096/fasebj.13.13.1711Suche in Google Scholar

Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem.273, 5858–5868.10.1074/jbc.273.10.5858Suche in Google Scholar

Rogakou, E.P., Nieves-Neira, Boon, C., Pommier, Y., and Bonner, W.M. (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem.275, 9390–9395.10.1074/jbc.275.13.9390Suche in Google Scholar

Schulze-Osthoff, K., Walczak, H., Droge, W., and Krammer, P.H. (1994). Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127, 15–20.10.1083/jcb.127.1.15Suche in Google Scholar

Spencer, V.A. and Davie, J.R. (1999). Role of covalent modifications of histones in regulating gene expression. Gene240, 1–12.10.1016/S0378-1119(99)00405-9Suche in Google Scholar

Swank, R.A., Th'ng, J.P., Guo, X.W., Valdez, J., Bradbury, E.M., and Gurley, L.R. (1997). Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites. Biochemistry36, 13761–13768.10.1021/bi9714363Suche in Google Scholar PubMed

Talasz, H., Helliger, W., Sarg, B., Debbage, P.L., Puschendorf, B., and Lindner, H. (2002). Hyperphosphorylation of histone H2A.X and dephosphorylation of histone H1 subtypes in the course of apoptosis. Cell Death Differ.9, 27–39.Suche in Google Scholar

Tanaka, M., Hennebold, J.D., Macfarlane, J., and Adashi, E.Y. (2001). A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage-stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development128, 655–664.10.1242/dev.128.5.655Suche in Google Scholar PubMed

Thoma, F., Koller, T., and Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol.83, 403–427.10.1083/jcb.83.2.403Suche in Google Scholar PubMed PubMed Central

Widlak, P., Li, P., Wang, X., and Garrard, W.T. (2000). Cleavage preferences of the apoptotic nuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J. Biol. Chem.275, 8226–8232.10.1074/jbc.275.11.8226Suche in Google Scholar PubMed

Widlak, P., Kalinowska, M., Parseghian, M.H., Lu, X., Hansen, J.C., and Garrard, W.T. (2005). The histone H1 C-terminal domain binds to the apoptotic nuclease, DNA fragmentation factor (DFF40/CAD) and stimulates DNA cleavage. Biochemistry44, 7871–7878.10.1021/bi050100nSuche in Google Scholar PubMed

Wolffe, A.P. (1998). Chromatin: Structure and Function, 3rd edition (San Diego, USA: Academic Press).Suche in Google Scholar

Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature284, 555–556.10.1038/284555a0Suche in Google Scholar PubMed

Yan, W., Ma, L., Burns, K.H., and Matzuk, M.M. (2003). HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermatogenesis. Proc. Natl. Acad. Sci. USA100, 10546–10551.10.1073/pnas.1837812100Suche in Google Scholar PubMed PubMed Central

Published Online: 2007-01-29
Published in Print: 2007-02-01

©2007 by Walter de Gruyter Berlin New York

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2007.022/html
Button zum nach oben scrollen