Home Life Sciences Tissue-specific transcription factor HNF4α inhibits cell proliferation and induces apoptosis in the pancreatic INS-1 β-cell line
Article
Licensed
Unlicensed Requires Authentication

Tissue-specific transcription factor HNF4α inhibits cell proliferation and induces apoptosis in the pancreatic INS-1 β-cell line

  • Silke Erdmann , Sabine Senkel , Tanja Arndt , Belén Lucas , Jörn Lausen , Ludger Klein-Hitpass , Gerhart U. Ryffel and Heike Thomas
Published/Copyright: January 10, 2007
Biological Chemistry
From the journal Volume 388 Issue 1

Abstract

Hepatocyte nuclear factor 4α (HNF4α) is a tissue-specific transcription factor expressed in many cell types, including pancreatic β-cells. Mutations in the HNF4α gene in humans give rise to maturity-onset diabetes of the young (MODY1) characterized by defective insulin secretion by β-cells. To elucidate the mechanism underlying this disease, we introduced the splice form HNF4α2 or HNF4α8 into the rat β-cell line INS-1. Upon tetracycline-induced expression, both HNF4α isoforms caused distinct changes in cell morphology and a massive loss of cell numbers that was correlated with reduced proliferation and induced apoptosis. This differential activity was reflected in oligonucleotide microarray analysis that identified more genes affected by HNF4α2 compared to HNF4α8, and suggests that both isoforms regulate largely the same set of genes, with HNF4α2 being a stronger transactivator. We verified the induction of selected transcripts by real-time RT-PCR, including KAI1 and AIF, both known to have apoptotic potential. By establishing cell lines with inducible expression of these target genes, we deduce that both factors are insufficient to induce apoptosis. We propose that the anti-proliferative and apoptotic properties of HNF4α may be an essential feature impaired in MODY1 and possibly also in type 2 diabetes.

:

Corresponding author

References

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet.25, 25–29.10.1038/75556Search in Google Scholar

Bartoov-Shifman, R., Hertz, R., Wang, H., Wollheim, C.B., Bar-Tana, J., and Walker, M.D. (2002). Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4α. J. Biol. Chem.277, 25914–25919.10.1074/jbc.M201582200Search in Google Scholar

Benoit, G., Malewicz, M., and Perlmann, T. (2004). Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. Trends Cell Biol.14, 369–376.10.1016/j.tcb.2004.05.007Search in Google Scholar

Boj, S.F., Parrizas, M., Maestro, M.A., and Ferrer, J. (2001). A transcription factor regulatory circuit in differentiated pancreatic cells. Proc. Natl. Acad. Sci. USA98, 14481–14486.10.1073/pnas.241349398Search in Google Scholar

Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., and Butler, P.C. (2003). β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes52, 102–110.10.2337/diabetes.52.1.102Search in Google Scholar

Chen, W.S., Manova, K., Weinstein, D.C., Duncan, S.A., Plump, A.S., Prezioso, V.R., Bachvarova, R.F., and Darnell, J.E. Jr. (1994). Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev.8, 2466–2477.10.1101/gad.8.20.2466Search in Google Scholar

Chiba, H., Gotoh, T., Kojima, T., Satohisa, S., Kikuchi, K., Osanai, M., and Sawada, N. (2003). Hepatocyte nuclear factor (HNF)-4α triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells. Exp. Cell Res.286, 288–297.10.1016/S0014-4827(03)00116-2Search in Google Scholar

Chiba, H., Itoh, T., Satohisa, S., Sakai, N., Noguchi, H., Osanai, M., Kojima, T., and Sawada, N. (2005). Activation of p21(CIP1/WAF1) gene expression and inhibition of cell proliferation by overexpression of hepatocyte nuclear factor-4α. Exp. Cell Res.302, 11–21.10.1016/j.yexcr.2004.08.014Search in Google Scholar PubMed

Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y.I., and Shoelson, S.E. (2002). Crystal structure of the HNF4α ligand binding domain in complex with endogenous fatty acid ligand. J. Biol. Chem.277, 37973–79763.10.1074/jbc.C200420200Search in Google Scholar PubMed

Dickson, L.M. and Rhodes, C.J. (2004). Pancreatic β-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am. J. Physiol. Endocrinol. Metab.287, E192–E198.10.1152/ajpendo.00031.2004Search in Google Scholar PubMed

Eeckhoute, J., Formstecher, P., and Laine, B. (2001). Maturity-onset diabetes of the young type 1 (MODY1)-associated mutations R154X and E276Q in hepatocyte nuclear factor 4α (HNF4α) gene impair recruitment of p300, a key transcriptional coactivator. Mol. Endocrinol.15, 1200–1210.10.1210/mend.15.7.0670Search in Google Scholar

Eeckhoute, J., Moerman, E., Bouckenooghe, T., Lukoviak, B., Pattou, F., Formstecher, P., Kerr-Conte, J., Vandewalle, B., and Laine, B. (2003). Hepatocyte nuclear factor 4α isoforms originated from the P1 promoter are expressed in human pancreatic β-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms. Endocrinology144, 1686–1694.10.1210/en.2002-0024Search in Google Scholar

Fajans, S.S., Bell, G.I., and Polonsky, K.S. (2001). Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med.345, 971–980.10.1056/NEJMra002168Search in Google Scholar

Green, V.J., Kokkotou, E., and Ladias, J.A. (1998). Critical structural elements and multitarget protein interactions of the transcriptional activator AF-1 of hepatocyte nuclear factor 4. J. Biol. Chem.273, 29950–29957.10.1074/jbc.273.45.29950Search in Google Scholar

Gunton, J.E., Kulkarni, R.N., Yim, S., Okada, T., Hawthorne, W.J., Tseng, Y.H., Roberson, R.S., Ricordi, C., O'Connell, P.J., Gonzalez, F.J., and Kahn, C.R. (2005). Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell122, 337–349.10.1016/j.cell.2005.05.027Search in Google Scholar

Gupta, R.K. and Kaestner, K.H. (2004). HNF-4α: from MODY to late-onset type 2 diabetes. Trends Mol. Med.10, 521–524.10.1016/j.molmed.2004.09.004Search in Google Scholar

Gupta, R.K., Vatamaniuk, M.Z., Lee, C.S., Flaschen, R.C., Fulmer, J.T., Matschinsky, F.M., Duncan, S.A., and Kaestner, K.H. (2005). The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J. Clin. Invest.115, 1006–1015.10.1172/JCI200522365Search in Google Scholar

Hansen, S.K., Parrizas, M., Jensen, M.L., Pruhova, S., Ek, J., Boj, S.F., Johansen, A., Maestro, M.A., Rivera, F., Eiberg, H., et al. (2002). Genetic evidence that HNF-1α-dependent transcriptional control of HNF-4α is essential for human pancreatic β cell function. J. Clin. Invest.110, 827–833.10.1172/JCI0215085Search in Google Scholar

Hattersley, A.T. (1998). Maturity-onset diabetes of the young: clinical heterogeneity explained by genetic heterogeneity. Diabet. Med.15, 15–24.10.1002/(SICI)1096-9136(199801)15:1<15::AID-DIA562>3.0.CO;2-MSearch in Google Scholar

Hayhurst, G.P., Lee, Y.H., Lambert, G., Ward, J.M., and Gonzalez, F.J. (2001). Hepatocyte nuclear factor 4α (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol.21, 1393–1403.10.1128/MCB.21.4.1393-1403.2001Search in Google Scholar

Ihara, A., Yamagata, K., Nammo, T., Miura, A., Yuan, M., Tanaka, T., Sladek, F.M., Matsuzawa, Y., Miyagawa, J., and Shimomura, I. (2005). Functional characterization of the HNF4α isoform (HNF4α8) expressed in pancreatic β-cells. Biochem. Biophys. Res. Commun.329, 984–990.10.1016/j.bbrc.2005.02.072Search in Google Scholar

Kistanova, E., Dell, H., Tsantili, P., Falvey, E., Cladaras, C., and Hadzopoulou-Cladaras, M. (2001). The activation function-1 of hepatocyte nuclear factor-4 is an acidic activator that mediates interactions through bulky hydrophobic residues. Biochem. J.356, 635–642.10.1042/bj3560635Search in Google Scholar

Laine, B., Eeckhoute, J., Suaud, L., Briche, I., Furuta, H., Bell, G.I., and Formstecher, P. (2000). Functional properties of the R154X HNF-4α protein generated by a mutation associated with maturity-onset diabetes of the young, type 1. FEBS Lett.479, 41–45.10.1016/S0014-5793(00)01864-0Search in Google Scholar

Lausen, J., Thomas, H., Lemm, I., Bulman, M., Borgschulze, M., Lingott, A., Hattersley, A.T., and Ryffel, G.U. (2000). Naturally occurring mutations in the human HNF4α gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res.28, 430–437.10.1093/nar/28.2.430Search in Google Scholar PubMed PubMed Central

Lazarevich, N.L., Cheremnova, O.A., Varga, E.V., Ovchinnikov, D.A., Kudrjavtseva, E.I., Morozova, O.V., Fleishman, D.I., Engelhardt, N.V., and Duncan, S.A. (2004). Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology39, 1038–1047.10.1002/hep.20155Search in Google Scholar PubMed

Lee, J.Y., Ristow, M., Lin, X., White, M.F., Magnuson, M.A., and Hennighausen, L. (2006). RIP-Cre revisited, evidence for impairments of pancreatic β-cell function. J. Biol. Chem.281, 2649–2653.10.1074/jbc.M512373200Search in Google Scholar PubMed

Li, J., Ning, G., and Duncan, S.A. (2000). Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev.14, 464–474.10.1101/gad.14.4.464Search in Google Scholar

Lindner, T., Gragnoli, C., Furuta, H., Cockburn, B.N., Petzold, C., Rietzsch, H., Weiss, U., Schulze, J., and Bell, G.I. (1997). Hepatic function in a family with a nonsense mutation (R154X) in the hepatocyte nuclear factor-4α 1/MODY1 gene. J. Clin. Invest.100, 1400–1405.10.1172/JCI119660Search in Google Scholar PubMed PubMed Central

Loeffler, M., Daugas, E., Susin, S.A., Zamzami, N., Metivier, D., Nieminen, A.L., Brothers, G., Penninger, J.M., and Kroemer, G. (2001). Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J.15, 758–767.10.1096/fj.00-0388comSearch in Google Scholar PubMed

Lucas, B., Grigo, K., Erdmann, S., Lausen, J., Klein-Hitpass, L., and Ryffel, G.U. (2005). HNF4α reduces proliferation of kidney cells and affects genes deregulated in renal cell carcinoma. Oncogene24, 6418–6431.10.1038/sj.onc.1208794Search in Google Scholar PubMed

Modjtahedi, N., Giordanetto, F., Madeo, F., and Kroemer, G. (2006). Apoptosis-inducing factor: vital and lethal. Trends Cell Biol.16, 264–272.10.1016/j.tcb.2006.03.008Search in Google Scholar

Nakhei, H., Lingott, A., Lemm, I., and Ryffel, G.U. (1998). An alternative splice variant of the tissue specific transcription factor HNF4α predominates in undifferentiated murine cell types. Nucleic Acids Res.26, 497–504.10.1093/nar/26.2.497Search in Google Scholar

Parviz, F., Matullo, C., Garrison, W.D., Savatski, L., Adamson, J.W., Ning, G., Kaestner, K.H., Rossi, J.M., Zaret, K.S., and Duncan, S.A. (2003). Hepatocyte nuclear factor 4α controls the development of a hepatic epithelium and liver morphogenesis. Nat. Genet.34, 292–296.10.1038/ng1175Search in Google Scholar

Robertson, R.P. (2004). Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet β cells in diabetes. J. Biol. Chem.279, 42351–42354.10.1074/jbc.R400019200Search in Google Scholar

Ryffel, G.U. (2001). Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J. Mol. Endocrinol.27, 11–29.10.1677/jme.0.0270011Search in Google Scholar

Ryffel, G.U. and Lingott, A. (2000). Distinct promoter elements mediate endodermal and mesodermal expression of the HNF1α promoter in transgenic Xenopus. Mech. Dev.90, 65–75.10.1016/S0925-4773(99)00230-0Search in Google Scholar

Schoenfeld, N., Bauer, M.K., and Grimm, S. (2003). The metastasis suppressor gene C33/CD82/KAI1 induces apoptosis through reactive oxygen intermediates. FASEB J.18, 158–160.Search in Google Scholar

Servitja, J.M. and Ferrer, J. (2004). Transcriptional networks controlling pancreatic development and β cell function. Diabetologia47, 597–613.10.1007/s00125-004-1368-9Search in Google Scholar PubMed

Sladek, F.M. and Seidel, S.D. (2001). Hepatocyte nuclear factor 4a. In: Nuclear Receptors and Genetic Disease, T.B. Burris and E.R.B. McCabe, eds. (San Diego, USA: Academic Press), pp. 309–361.Search in Google Scholar

Sladek, F.M., Dallas-Yang, Q., and Nepomuceno, L. (1998). MODY1 mutation Q268X in hepatocyte nuclear factor 4α allows for dimerization in solution but causes abnormal subcellular localization. Diabetes47, 985–990.10.2337/diabetes.47.6.985Search in Google Scholar PubMed

Stoffel, M. and Duncan, S.A. (1997). The maturity-onset diabetes of the young (MODY1) transcription factor HNF4α regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA94, 13209–13214.10.1073/pnas.94.24.13209Search in Google Scholar PubMed PubMed Central

Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397, 441–446.10.1038/17135Search in Google Scholar PubMed

Tanaka, T., Jiang, S., Hotta, H., Takano, K., Iwanari, H., Sumi, K., Daigo, K., Ohashi, R., Sugai, M., Ikegame, C., et al. (2006). Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4α in the pathogenesis of human cancer. J. Pathol.208, 662–672.10.1002/path.1928Search in Google Scholar

Taylor, D.G., Haubenwallner, S., and Leff, T. (1996). Characterization of a dominant negative mutant form of the HNF-4 orphan receptor. Nucleic Acids Res.24, 2930–2935.10.1093/nar/24.15.2930Search in Google Scholar

Thomas, H., Jaschkowitz, K., Bulman, M., Frayling, T.M., Mitchell, S.M., Roosen, S., Lingott-Frieg, A., Tack, C.J., Ellard, S., Ryffel, G.U., and Hattersley, A.T. (2001). A distant upstream promoter of the HNF-4α gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum. Mol. Genet.10, 2089–2097.10.1093/hmg/10.19.2089Search in Google Scholar

Thomas, H., Senkel, S., Erdmann, S., Arndt, T., Turan, G., Klein-Hitpass, L., and Ryffel, G.U. (2004). Pattern of genes influenced by conditional expression of the transcription factors HNF6, HNF4α and HNF1β in a pancreatic β-cell line. Nucleic Acids Res.32, e150.10.1093/nar/gnh144Search in Google Scholar

Torres-Padilla, M.E., Fougere-Deschatrette, C., and Weiss, M.C. (2001). Expression of HNF4α isoforms in mouse liver development is regulated by sequential promoter usage and constitutive 3′ end splicing. Mech. Dev.109, 183–193.10.1016/S0925-4773(01)00521-4Search in Google Scholar

Torres-Padilla, M.E., Sladek, F.M., and Weiss, M.C. (2002). Developmentally regulated N-terminal variants of the nuclear receptor hepatocyte nuclear factor 4α mediate multiple interactions through coactivator and corepressor-histone deacetylase complexes. J. Biol. Chem.277, 44677–44687.10.1074/jbc.M207545200Search in Google Scholar

Wang, H., Iakova, P., Wilde, M., Welm, A., Goode, T., Roesler, W.J., and Timchenko, N.A. (2001). C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol. Cell8, 817–828.10.1016/S1097-2765(01)00366-5Search in Google Scholar

Wang, H., Maechler, P., Antinozzi, P.A., Hagenfeldt, K.A., and Wollheim, C.B. (2000). Hepatocyte nuclear factor 4α regulates the expression of pancreatic β-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion. J. Biol. Chem.275, 35953–35959.10.1074/jbc.M006612200Search in Google Scholar PubMed

Werdien, D., Peiler, G., and Ryffel, G.U. (2001). FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Res.29, E53.10.1093/nar/29.11.e53Search in Google Scholar PubMed PubMed Central

Wu, D.H., Liu, L., Chen, L.H., and Ding, Y.Q. (2004). KAI1 gene expression in colonic carcinoma and its clinical significance. World J. Gastroenterol.10, 2245–2249.10.3748/wjg.v10.i15.2245Search in Google Scholar PubMed PubMed Central

Ye, H., Cande, C., Stephanou, N.C., Jiang, S., Gurbuxani, S., Larochette, N., Daugas, E., Garrido, C., Kroemer, G., and Wu, H. (2002). DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat. Struct. Biol.9, 680–684.10.1038/nsb836Search in Google Scholar PubMed

Published Online: 2007-01-10
Published in Print: 2007-01-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis
  2. Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion
  3. Structural modifications to a high-activity binding peptide located within the PfEMP1 NTS domain induce protection against P. falciparum malaria in Aotus monkeys
  4. Characterisation of YtfM, a second member of the Omp85 family in Escherichia coli
  5. Presence of the propeptide on recombinant lysosomal dipeptidase controls both activation and dimerization
  6. Conformational studies on Arabidopsis sulfurtransferase AtStr1 with spectroscopic methods
  7. Glycine-assisted enhancement of 1,4-β-d-xylan xylanohydrolase activity at alkaline pH with a pH optimum shift
  8. Asef is a Cdc42-specific guanine nucleotide exchange factor
  9. Metal-binding sites at the active site of restriction endonuclease BamHI can conform to a one-ion mechanism
  10. Interaction of the cellular prion protein with raft-like lipid membranes
  11. Tissue-specific transcription factor HNF4α inhibits cell proliferation and induces apoptosis in the pancreatic INS-1 β-cell line
  12. Binding of aflatoxins to the 20S proteasome: effects on enzyme functionality and implications for oxidative stress and apoptosis
  13. The insect metalloproteinase inhibitor gene of the lepidopteran Galleria mellonella encodes two distinct inhibitors
  14. Activation profiles of the zymogen of aspergilloglutamic peptidase
Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2007.011/html?lang=en
Scroll to top button