Home One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase
Article
Licensed
Unlicensed Requires Authentication

One of the Ca2+ binding sites of recoverin exclusively controls interaction with rhodopsin kinase

  • Konstantin E. Komolov , Dimitri V. Zinchenko , Valeriya A. Churumova , Svetlana A. Vaganova , Oliver H. Weiergräber , Ivan I. Senin , Pavel P. Philippov and Karl-Wilhelm Koch
Published/Copyright: July 5, 2005
Biological Chemistry
From the journal Volume 386 Issue 3

Abstract

Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca2+-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (RecE121Q) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of RecE121Q binds one Ca2+ via its second Ca2+-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated RecE121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca2+-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity.

:

Present address: AG Biochemistry, Faculty V, IBU, University of a Oldenburg, D-26111 Oldenburg, Germany; Corresponding author

References

Alekseev, A.M., Shulga-Morskoy, S.V., Zinchenko, D.V., Shulga-Morskaya, S.A., Suchkov, D.V., Vaganova, S.A., Senin, I.I., Zargarov, A.A., Lipkin, V.M., Akhtar, M., and Philippov, P.P. (1998). Obtaining and charcterization of EF-hand mutants of recoverin. FEBS Lett.440, 116–118.10.1016/S0014-5793(98)01426-4Search in Google Scholar

Ames, J.B., Porumb, T., Tanaka, T., Ikura, M., and Stryer, L. (1995). Amino-terminal myristoylation induces cooperative calcium binding to recoverin. J. Biol. Chem.270, 4526–4533.10.1074/jbc.270.9.4526Search in Google Scholar PubMed

Ames, J.B., Tanaka, T., Stryer, L., and Ikura, M. (1996). Portrait of a myristoyl switch protein. Curr. Opin. Struct. Biol.6, 432–438.10.1016/S0959-440X(96)80106-0Search in Google Scholar PubMed

Ames, J.B., Ishima, R., Tanaka, T., Gordon, J.I., Stryer, L., and Ikura, M. (1997). Molecular mechanics of calcium-myristoyl switches. Nature389, 198–202.10.1038/38310Search in Google Scholar PubMed

Ames, J.B., Hamasaki, N., and Molchanova, T. (2002). Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Biochemistry41, 5776–5787.10.1021/bi012153kSearch in Google Scholar PubMed

Braunewell, K.-H. and Gundelfinger, E.D. (1999). Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tiss. Res.295, 1–12.10.1007/s004410051207Search in Google Scholar PubMed

Burgoyne, R.D., O'Callaghan, D.W., Hasdemir, B., Haynes, L.P., and Tepikin, A.V. (2004). Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function. Trends Neurosci.27, 203–209.10.1016/j.tins.2004.01.010Search in Google Scholar PubMed

Chen, C.-K., Inglese, J., Lefkowitz, R.J., and Hurley, J.B. (1995). Ca2+-dependent interaction of recoverin with rhodopsin kinase. J. Biol. Chem.270, 18060–18066.10.1074/jbc.270.30.18060Search in Google Scholar PubMed

Dizhoor, A.M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolley, D., Walsh, K.A., Philipov, P.P., Hurley, J.B., and Stryer, L. (1991). Recoverin: a calcium-sensitive activator of retinal rod guanylate cyclase. Science251, 915–918.10.1126/science.1672047Search in Google Scholar PubMed

Dizhoor, A.M., Chen, C.-K., Olshevskaya, E., Sinelnikova, V.V., Phillipov, P., and Hurley, J.B. (1993). Role of the acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science259, 829–832.10.1126/science.8430337Search in Google Scholar PubMed

Gorodovikova, E.N., Gimelbrant, A.A., Senin I.I., and Philippov, P.P. (1994). Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells. FEBS Lett.349, 187–190.10.1016/0014-5793(94)00661-XSearch in Google Scholar

Hwang, J.-Y. and Koch, K.-W. (2002). The myristoylation of the neuronal Ca2+sensors guanylate cyclase-activating protein 1 and 2. Biochim. Biophys. Acta1600, 111–117.10.1016/S1570-9639(02)00451-XSearch in Google Scholar PubMed

Kawamura, S. and Murakami, M. (1991). Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature349, 420–423.10.1038/349420a0Search in Google Scholar PubMed

Kawamura, S., Hisatomi, O., Kayada, S. Tokunaga, F., and Xuo, C.-H. (1993). Recoverin has S-modulin activity in frog rods. J. Biol. Chem.268, 14579–14582.10.1016/S0021-9258(18)82369-9Search in Google Scholar

Klenchin, V.A., Calvert, P.D., and Bownds, M.D. (1995). Inhibition of rhodopsin kinase by recoverin. J. Biol. Chem.270, 16147–16152.10.1074/jbc.270.27.16147Search in Google Scholar PubMed

Koch, K.-W., Lambrecht, H.-G., Haberecht, M., Redburn, D., and Schmidt, H.H.H.W. (1994). Functional coupling of a Ca2+/calmodulin-dependent nitric oxide synthase and a soluble guanylyl cyclase in vertebrate photoreceptor cells. EMBO J.13, 3312–3320.10.1002/j.1460-2075.1994.tb06633.xSearch in Google Scholar PubMed PubMed Central

Lambrecht, H.-G. and Koch, K.-W. (1991). A 26-kDa calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J.10, 793–798.10.1002/j.1460-2075.1991.tb08011.xSearch in Google Scholar PubMed PubMed Central

Lange, C. and Koch, K.-W. (1997). Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time. Biochemistry36, 12019–12026.10.1021/bi970938dSearch in Google Scholar PubMed

Makino, C.L., Dodd, R.L., Chen, J., Burns, M.E., Roca, A., Simon, M.I., and Baylor, D.A. (2004). Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J. Gen. Physiol.123, 729–741.10.1085/jgp.200308994Search in Google Scholar PubMed PubMed Central

Permyakov, S.E., Cherskaya, A.M., Senin, I.I., Zargarov, A.A., Shulga-Morskoy, S.V., Alekseev, A.M., Zinchenko, D.V., Lipkin, V.M., Philippov, P.P., Uversky, V.N., and Permyakov, E.A. (2000). Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Protein Eng.13, 783–790.10.1093/protein/13.11.783Search in Google Scholar PubMed

Sanada, K., Kokame, K., Yoshizawa, T., Takao, T., Shimonishi, Y., and Fukada, Y. (1995). Role of heterogeneous terminal acylation of recoverin in rhodopsin phosphorylation. J. Biol. Chem.270, 15459–1546210.1074/jbc.270.26.15459Search in Google Scholar PubMed

Senin, I.I., Fischer, T., Komolov, K.E., Zinchenko, D.V., Philippov, P.P., and Koch, K.-W. (2002). Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. J. Biol. Chem.277, 50365–50372.10.1074/jbc.M204338200Search in Google Scholar PubMed

Senin, I.I., Zargarov, A.A., Alekseev, A.M., Gorodovikova, E.N., Lipkin, V.M., and Philippov, P.P. (1995). N-Myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase. FEBS Lett.376, 87–90.10.1016/0014-5793(95)01187-2Search in Google Scholar PubMed

Shichi, H. and Somers, R.L. (1978). Light-dependent phosphorylation of rhodopsin. J. Biol. Chem.253, 7040–7046.10.1016/S0021-9258(17)38026-2Search in Google Scholar

Tachibanaki, S., Nanda, K., Sasaki, K., Ozaki, K., and Kawamura, S. (2000). Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase. J. Biol. Chem.275, 3313–3319.10.1074/jbc.275.5.3313Search in Google Scholar PubMed

Tanaka, T., Ames, J.B., Harvey, T.S., Stryer, L., and Ikura, M. (1995). Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature376, 444-447.10.1038/376444a0Search in Google Scholar PubMed

Weiergräber, O.H., Senin, I.I., Philippov, P.P., Granzin, J., and Koch, K.-W. (2003). Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J. Biol. Chem.278, 22972–22979.10.1074/jbc.M300447200Search in Google Scholar PubMed

Zozulya, S. and Stryer, L. (1992). Calcium-myristoyl protein switch. Biochemistry89, 11569–11573.10.1073/pnas.89.23.11569Search in Google Scholar PubMed PubMed Central

Published Online: 2005-07-05
Published in Print: 2005-03-01

©2004 by Walter de Gruyter Berlin New York

Downloaded on 16.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2005.034/html
Scroll to top button